

Ear Development Issues in Corn

Osler Ortez Doctoral Student | Agronomy & Crop Production

Justin McMechan || Tom Hoegemeyer || Roger Elmore

Crop Production Clinics – Eastern Nebraska January, 2021

GRONOMY AND HORTICULTURE

College of Agricultural Sciences

Review of literature

• Field surveys, 2016

• Field work, 2018 through 2020

Summary of results

Reports of ear issues in August 2016 Initially thought it was isolated to Nebraska

Introduction

Reports of ear issues in August 2016 Initially thought it was isolated to Nebraska

Well-substantiated reports from: Texas Panhandle Eastern Colorado **OWa** llinois

Crop Production Clinics

- They affect grain yield and grain quality

Literature review, ear abnormalities

Not enough research has been done in this specific area

Ten commonly known and three as recent concern symptoms

Possible outcome from genetics, environment, and management

Its mitigation is imperative towards productivity & sustainability

What is known?

- Flattened / fasciated / branched
- Pinched / reduced row number
- Arrested ears
- Blunt / beer can ears
- Tassel ears
- Silk balled ears
- Silk clipped ears
- Banana ears
- Zipper ears
- Tip backed ears

Recent concern? Multi-ears Barbell-ears

Short-husks

Pinched; reduced row number **POSSIBLE FACTORS** Cell division inhibitors, i.e. sulfonylurea herbicides **EXPECTED TIMING** Mid-season; kernel rows definition; ovule formation: ~V7 to ~V10

LEAD: Osler Ortez EMAIL: osler.ortez@huskers.unl.edu **TEAM: Justin McMechar Roger Elmore**

SYMPTOM Flattened; fasciated; branched **POSSIBLE FACTORS** Specific mutants; genetics EXPECTEDTIMING Early-season; ear formation; number of kernel rows/ear definition; ~V4 to ~V7

SYMPTOM

Arrested ear

POSSIBLE FACTORS

Photo: O. Ortez Photo: B. Nielser

Blunt: beer car **POSSIBLE FACTORS** Plant stress response, i.e. chemicals or environment **EXPECTED TIMING** Mid-season; cell division process; kernel formation; ~V7 to ~V12

eer Can' Ea

SYMPTOM

Photo: B. Nielsen

Tasselear POSSIBLE FACTORS Normally on tillers; lower populations; end rows; border rows XPECTEDTIMING Mid-season; ear and tassel formation on tillers

Photo: O. Ortez

PROJECT BACKGROUND

- New corn ear abnormalities reported in recent years.
- Little is known about abnormalities or their causes.
- Hence, a comprehensive review of literature is needed to better understand ear abnormalities in corn.

What is known about **Corn Ear Abnormalities?**

OUR FOCUS

Temperature limited solar

POSSIBLE FACTORS Environmental stress; cold temperatures; genetics;

POSSIBLE

FACTORS

radiation;

hormona

changes

stress;

EXPECTED TIMING Early-season; sometime during or after ear initiation: ~V4 to ~V6

Photos: O. Orte

SYMPTOM : Barbell-ear; dumbbell-shaped

Photos: O. Ortez

EXPECTED TIMING Mid-season; when kernel rows per ear are set; ~V12 to ~V15

POSSIBLE FACTORS Heat/drought followed by cooler temperatures and precipitation; high speed winds; storms

Photos: O. Ortez

EXPECTED TIMING Late-season; close to flowering and pollination time; ~VT and ~R1

CLOSING REMARKS One would think that after 70+ years studying corn, it would be understood completely... Not true! Widespread cases of ear abnormalities have been reported in recent years, little is known about the causes...

SYMPTOM : Short-husk ear

Photos: J. Hardwicl

SYMPTOM

Photo: B. Nielsen

Silk clipped **POSSIBLE FACTORS** Insects, i.e. Japanese/corn rootworm beetles **EXPECTED TIMING** Mid-season; flowering and pollination time; ~VT and ~R1

Nebraska

Lincoln

SYMPTOM **Banana shaped POSSIBLE FACTORS** Heat/drought; chemical applications; stink bug injury **EXPECTED TIMING** Mid-season: around pollination time, ~R1

Photos: O. Ortez

SYMPTOM Zipper **POSSIBLE FACTORS** Genetics; high-seeding rates; drought stress; defoliation **EXPECTED TIMING** Late-season; during/after pollen kernels formed & aborted, >R1

Photo adapted from Thomison et al, 2020 **Tip back** POSSIBLE FACTORS Pollen/silk availability; kernel abortion; weather; genetics

EXPECTEDTIMING Late-season; during grain filling period; ~R1 to ~R4

Photo: J. McMecha

- **NEXT STEPS**
- Summarize survey results from grower fields, in 2016. Summarize experimental results 2018-2021:
- hybrids, planting dates, seeding rates, delayed planting. Summarize greenhouse results, 2020: stress impacts.

Ear development issues as result of interactions among G x E x M:

genetics (G)

environment (E)

... but specific causes are still to be found!

Crop Production Clinics

- management practices (M)

Overarching Objective To study causal agents of ear development issues and productivity **IOSSES** in corn

Crop Production Clinics

Normal Ears

Multi-Ears

Three ears

Four ears

Crop Production Clinics

Barbell-Ears

Barbell-1: base

Barbell-2: middle

Barbell-3: tip

Short Husks

70% short

80% short

90% short

-Yield Components

Field Surveys, 2016

- 15 grower fields in Nebraska
- Multiple hybrids included
- •50-100 plants sampled per field
- •Yields ranged 103 to 260 bu/Ac

Step #1 Plant Measurements

Ear/Husk Length 18cm 18cm 18cm 14cm 15cm 5cm

Data Collection, 2016 through 2020-

Step #2 Ear Classification

Normal Secondary Ear

Short Husks

Barbell Ears

Multi-ear

Step #3

Yield Components

12 affected fields, 22% of ear abnormalities

Field Surveys, 2016-

Lower yield for abnormal ears, 35 to 91% losses

2016 & 2017: • Primary ear loss? Internode length?

2018 through 2020: • Primary ear loss? Internode length? Sheath constriction? Hybrid specific? Weather stress? •Ethylene levels? Seeding rates? Planting dates? Emergence timing? •Ear placement? Solar radiation?

Field Trials, 2018 through 2020

Crop Production Clinics

UNL Farms (3): HAVELOCK, Lincoln SCAL, Clay Center ENREC, Mead

> Industry Trials(4): Lawrence Hooper Filley York

Locations (2): South Central Agricultural Lab, Clay Center, NE Eastern Nebraska Research & Extension, Mead, NE

Planting Dates (4): Mid/Late April Early May Mid May Late May

Hybrids (6): Three Susceptible (racehorses) = yield varies Three Checks (workhorses) = stable yields

Locations (4): Lawrence, NE Hooper, NE Seeding rates (5): **18,000 seeds/Ac⁻¹** 26,000 seeds/Ac⁻¹

34,000 seeds/Ac⁻¹ 42,000 seeds/Ac⁻¹ **50,000 seeds/Ac⁻¹**

Hybrids (8): Four Susceptible (racehorse) Four Checks (workhorse)

Filley, NE York, NE

About 7% of ear issues documented across fields

les Issu of mber Ž

About 12% of ear issues documented across fields

Crop Production Clinics 2019: six fields summary

saues S of Number

More issues with susceptible hybrids, 2016 through 2020

From 2018 abnormal ears

Hybrids: Four Susceptible racehorse = yield varies

Four Checks workhorse = stable yields

Short husks accounted for **54% of the issues**

2019: ear types

Short husks, 69% of the issues Multi Ears increased by about 73% **Barbell Ears observed in 2019**

Tendency to less issues with optimum planting dates, early and mid May

Planting Date

Crop Production Clinics

2018: planting dates

2019: planting dates

Mid-May Mid-April Early-May **Planting Date**

Tendency to less issues with optimum planting dates, early and mid May

Late-May

More issues with higher seeding rates (absolute and relative terms)

More issues with higher seeding rates More issues in 2019 (compared to 2018)

Crop Production Clinics SUMMARY, 2016 through 2020 Ear issues decreased grain yield Lower placement for abnormal ears Ear issues found across sites & conditions: 2016 (22%), 2018 (7%), 2019 (12%), 2020 (%) Susceptible hybrids showed more issues Short-husks led the counts Early & late planting dates presented more issues Higher seeding rates resulted in more issues

Greenhouse trial added in 2020: Hybrids | Timings | Temperatures | Growth regulators

We can think that after 70+ years of basic understanding of corn, it would be understood completely...

are still present in corn fields,

...Not true!!! Ear issues affronted in 2016 reducing productivity and causing us to continue investigating the causes

Source (2014): http://corn.agronomy.wisc.edu/Management/L018.aspx

Osler Ortez - Ph.D. Student in Agronomy and Horticulture https://cropwatch.unl.edu/author/osler-ortez-phd-student-agronomy-and-horticulture

Crop Production Clinics Some resources available •Nebraska Farmer: <u>Does planting date affect corn growth</u>, ear issues? •UNL CropWatch: Planting Date Impact on Corn Growth and Ear Issues •UNL CropWatch: Corn Development from Studying Ear Issues •UNL Crop Management Conference Proceedings: Corn Growth and development •North Central Integrated Pest Management Center: Corn Growth and Development

•UNL South Central Agricultural Lab Field Day Proceedings (pp. 8-9): Ear Issues in Corn

•UNL CropWatch: Corn ear issues likely correlated with the loss of the primary ear node

•UNL Crop Production Clinics Proceedings (pp. 27-29): Corn Ear Formation Issues of 2016

EXTENSION

Crop Production Clinics

Thank you Questions?

Osler Ortez Ph.D. Student, Agronomy osler.ortez@huskers.unl.edu Phone: (785) 370-9369

AGRONOMY AND HORTICULTURE

College of Agricultural Sciences and Natural Resources