

Oat Forage Seeding Rate x N Rate

Mitch Stephenson
Jerry Volesky
Daren Redfearn

Potential benefits for cover or forage crops

Erosion Control

- Ground cover during high rain and wind (i.e., Spring)
- Root biomass to anchor soil
- Increased soil organic C to improve aggregate soil stability

Compaction Management

- Tap-rooted species can open compacted soil layers
- High root biomass species can reduce bulk density
- Tap-rooted species create bio-pores

Soil Nutrient

- Legume crops can fix atmospheric N and decompose rapidly
- Reduce N leaching
- Increase soil organic matter
- Reduce nutrient loss through erosion

Other

- Weed suppression
- Biodiversity and wildlife habitat
- Grazing and haying
- Crop production
- Pest or disease control

 $Blanco-Canqui\ et\ al.\ 2015.\ Cover\ Crops\ and\ Ecosystem\ Services:\ Insights\ from\ Studies\ in\ Temperate\ Soils.$

Cool-season annual forage in a wheat rotation

Reduced soil moisture availability at planting (Nielsen et al. 2015)

10 % less wheat yield compared to fallow (Nielsen et al. 2016)

Increased net returns (Lyon et al. 2004, Holman et al. 2018)

"Growing a forage crop in wet years and using fallow in dry years (i.e., "flexfallow") would provide the highest returns." (Holman et al. 2018)

Comparison of oat/spring pea forage mixtures (2017 and 2018)

Treatment seeding rates			
	Oats	Peas	Seed Cost
1.	70#	0#	\$14.00
2.	52.5 #	17.5#	\$17.15
3.	35 #	35#	\$20.30
4.	17.5 #	52.5 #	\$23.45
5.	0#	70#	\$26.60

 $Pflueger\ et\ al.\ 2020-Influence\ of\ oat\ and\ spring\ pea\ mixtures\ on\ forage\ characteristics$

Objective: Identify optimal seeding rate and N application for spring planted oats

Oats as Forage

- Easy to establish
- Grows rapidly
- Productive
- Can be economical.
- Potential for high quality.

- Optimum window
 - March 15-April 1 (Eastern Nebraska)
 - April 1-April 15 (Western Nebraska)
- Current recommended rates
 - Between 80-100 lbs. seed/acre
- Seeding depth
 - Up to 1 ½ inches is common
 - Planting at ½ to ¾ inches could increase emergence rate, establishment, and forage production

Seeding Rate (lbs per acre)	Fertilization (lbs N per acre)		
25	0		
50	30		
75	60		
100			
**Recommended			

• Variety: 'Goliath' oat

• Planted: late March/early April

• Harvest: mid-June/ 'soft dough' stage

- 1. Forage production (lbs per acre)
- 2. Forage quality (CP, TDN)
- 3. Number of tillers (#)

HPAL was 45% of normal precipitation (3.79 in.) in April, May, June (8.24 in. ave) Approximately 1,200 to 1,500 lbs per acre less than previous studies for oats

Take Home Points – Seeding Rate

- Averaged across sites:
 - •Seeding rates between 50 and 100 lbs per acre = biomass and CP
 - 25 lbs per acre = 11% less biomass and 16% greater CP
 - •Tiller numbers per foot increase as seeding rates increased

Take Home Points - Fertilization

- Averaged across sites:
 - •Increase from 0, 30, 60 lbs N per acre for biomass and CP
 - •lbs N per acre did not influence tiller numbers

