

# Effects of Corn Residue and Cover Crops on Soil Greenhouse Gas Emissions



Marisa Grubb<sup>1</sup>, Virginia Jin<sup>2</sup>, Marty Schmer<sup>2</sup>

<sup>1</sup>Purdue University, West Lafayette, IN; <sup>2</sup>USDA-Agricultural Research Service (ARS), Lincoln, NE

# Background







Figure 3. No residue removal with cereal rye cover crop



Figure 4. Maximum residue removal with cereal rye cover crop

### **Benefits of Corn Residue Retention**

- Source of grazing for livestock
- Protects soil from wind and water erosion
- Increases soil organic matter, moisture and nutrient holding capacity

#### **Benefits of Corn Residue Removal**

- Improves soil conditions for crop planting and germination
- Source of biofuel and pelletized feed for livestock

#### **Benefits of Winter Cover Crops**

- Protects soil from wind and soil erosion
- Increases soil organic matter, moisture and nutrient holding capacity
- Suppresses weed growth, soil diseases, and pests

# Objectives

- Evaluate how corn residue/stover management and cover crop use affects soil greenhouse gas (GHG) emissions in an intensively managed no-till continuous corn (Zea mays L.) production system
- Determine corn residue removal effects on carbon dioxide ( $CO_2$ ), nitrous oxide ( $N_2O$ ), and methane (CH₄) emissions
- Determine winter cover crop effects on CO<sub>2</sub>, N<sub>2</sub>O, and CH<sub>4</sub> emissions



**United States Department of Agriculture** 

Materials and Methods











**Data Processing** 

- For crop-year (CY) 2011 to CY2014 at the University of Nebraska's South Central Agricultural Laboratory (Clay Center, NE)
- USDA-ARS GRACEnet (Greenhouse gas Reduction through Agricultural Carbon Enhancement) protocol (Parkin & Venterea 2010)
- Samples taken every 5-10 days during growing season and once every month during the non-growing season
- Daily GHG flux rate calculated as a linear or quadratic curve
- Cumulative emissions are calculated by taking the trapezoidal integration of the daily GHG fluxes measured throughout the crop year
- Annual GHG emissions are analyzed with a 3-way mixed ANOVA, with residue and cover crop management as fixed effects, and year and field replicate as random effects

# Results





Total Ppt Growing Growing Season Start Season End (mm) CY2011 4/29/11 363.47 10/5/11 CY2012 4/24/12 9/24/12 300.99 CY2013 5/16/13 10/22/13 442.47 CY2014 5/2/14 10/15/14 518.16

No treatment effect on CH<sub>4</sub> emissions. CH<sub>4</sub> Mean Crop Year Emissions: 4.21 +/- 0.04 kg CH<sub>4</sub>-C/ha/yr

### Conclusion

- CO<sub>2</sub> generally reduces by a reduction in biomass input
- N<sub>2</sub>O increases with an increase in moisture retainment and biomass residue
- System's CH<sub>4</sub> emissions negligible compared to other two GHGs
- Effect of residue management outweighs the impact of cover crop use or annual weather
- Study limited to a single geographical climate and crop
- Future work: expand the study to various crops and climates

## Acknowledgements & References

Many thanks to Dr. Virginia Jin, Dr. Marty Schmer, Sue, David, McKinzie, Ben, and Tim. Also, a special thanks to Dr. Martha Mamo, Dr. Don Lee, and the Applied Plant Systems Program for supporting this project.

Parkin, T.B. and Venterea, R.T. 2010. Sampling Protocols. Chapter 3. Chamber-Based Trace Gas Flux Measurements. IN Sampling Protocols. R.F. Follett, editor. p. 3-1 to 3-39. Available at: www.ars.usda.gov/research/GRACEnet





**Agricultural Research Service**