A Genetic Conundrum: Evaluation of a Wheat Breeding Selection Program

Sire Kassama¹, Dr. Stephen Baenziger²

1 University of Central Florida, 2 University of Nebraska-Lincoln

This program was supported by Grant Program no. 2017-67032-26018 from the USDA National Institute of Food and Agriculture.

Background

Wheat needs to be bred with herbicide resistance. The presence of weeds encroach upon and compete with wheat thus lowering

and are as follows: CCFf x CCFF, CcFf x ccff, CCff x CCFF, [CCff x ccff] x CCFF, CCFf x CCff, Ccff x CCFF.

Development of Herbicide Resistant Wheat through the Use of Conventional Breeding

CCFF

Damaged

CCFF CCFF CcFF

CcFf CCff Ccff

ccFF ccFf ccff

F2 Progeny

=9 Genotypes

F2 plants

subsequently

selfed

F3 Progeny, has

higher ratio of

dominant

genotypes than

recessive

because of

selective

pressure

F4 Progeny, has

higher ratio of

dominant

genotypes than

recessive

because of

selective

pressure

Objective

Although the headrows should show very miniscule amounts of damage by herbicide, a significant number of plants appeared to be damaged after application. This means that many of the plants did not have the anticipated resistance. The purpose of this study is to perform a statistical comparison of the projected resistance versus the observed resistance wheat in headrows.

Need for Plant Breeding

Methods

Visual inspection of herbicide resistant headrows. Thirty populations given a score of healthy or stunted/damaged.

Conclusion

The results demonstrate that there is a significant (p≤ 0.01) discrepancy between the anticipated resistance of the headrows and what has been observed. These results suggest that there may be a need to improve selection methods for herbicide resistant wheat.

Results

	3	Observed (0)	Expected (E)	(O-E)^2/E			Observed (O)	Expected (E)	(O-E)^2/E
CCFF x CCff Health	CFF x CCff Healthy 16			34.125		9,626	CC	Ff x CCFF Healthy	61	280.3125	171.58697
CCFF x CCff Damaged		62		43.875		7.4875356	CCFf x CCFF Damaged		329	109.6875	438.500036
				χ2 Value		17.113536	_			χ2 Value	610.087006
		Observed (O)		Expected (E)		(O-E)*2/E			Observed (O)	Expected (E)	(O-E)^2/E
CCFF x CCff Healthy		5		102.375		25.781593	Ccff x CCFF Healthy		191	283.2375	30.037535
CCFF x CCff Damaged Obs		183		131.625		20.05235	Ccff x CCFF Damaged		667	574.7625	14.802212
				χ2 Value		45.833944				χ2 Value	44.839747
		bserved (O) Exp		pected (E) (O-E)^2/E			Observed (O)	Expected (E)	(O-E)^2/E
CoFf a coff Healthy		20		8.686364		14.73555098	CCFf x CCff Healthy		32	51.1875	7.192384
CcFf x ccff Duraged	Г	136		147.3136		0.868877992		f x CCff Damaged	202	182.8125	2.01386752
		χ2		Value		15.60442897				χ2 Value	9.20625153
						Observed	(0)	Expected (E)	(O-E)^2/E		
		Ccff x CCFF He			hy		173	128.7443	15.212844		
		Coff x 0		CCFF Damage		8	217	261.2557	7.4967435		
								χ2 Value	22.709588		

Perform a χ^2 analysis

Acknowledgements

I would like to thank the University of Nebraska-Lincoln Summer Research Program. A special thanks to the laboratory of Dr. Baenziger for their continued support. I would also like to thank the McNair Scholars Program.