EXTENSION

High Temperature Enhances the Efficacy, Absorption and/or Translocation of 2,4-D or Glyphosate in Giant Ragweed

Zahoor A. Ganie¹, Mithila Jugulam², Amit J. Jhala¹ ¹University of Nebraska-Lincoln; ²Kansas State University ^{*}zahoorganie11@huskers.unl.edu

Introduction

- Giant ragweed (*Ambrosia trifida* L.) is an important broadleaf weed found in diverse agroecosystems, roadsides, and wastelands.
- Early spring emergence is a typical characteristic of giant ragweed. For example, in Nebraska 50% emergence occurs by March end to mid-April (Kaur et al. 2016).
- Preplant control of giant ragweed is essential to allow crop planting in weed free environment, which increases the effectiveness of PRE and POST herbicides (Ganie et al. 2016).
- Glyphosate and 2,4-D are very effective for giant ragweed control, however, limited information is available on the effect of environmental factors including temperature on the

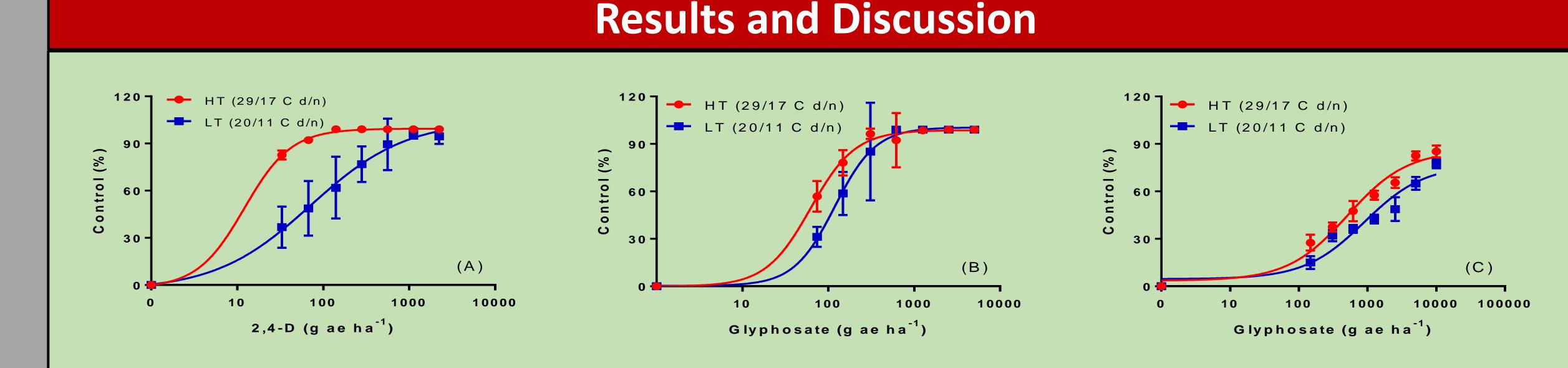


Figure 2. Dose-response curves based on estimates of giant ragweed control at two different temperatures (⁰C, day/night): high temperature (HT) 29/17; and low temperature (LT) 20/11; (A) 2,4-D, (B) glyphosate on glyphosate-susceptible, and (C) glyphosate on glyphosate-resistant giant ragweed.

efficacy of these systemic herbicides.

Objectives

To evaluate the efficacy, absorption, and translocation of 2,4-D or glyphosate on giant ragweed at different growth temperatures.

To determine the effect of varying growth temperatures on the level of glyphosate resistance in giant ragweed.

Hypothesis

The hypothesis of this study was that high temperature will increase the efficacy, absorption and/or translocation of 2,4-D or glyphosate in giant ragweed.

Materials and Methods

Dose-response experiments:

- 2,4-D/glyphosate dose-response studies were conducted under two growth temperatures (day/night, ⁰C): high (HT) 29/17 and low (LT) 20/11, at a relative humidity of 70% (±5).
- Glyphosate-resistant and –susceptible biotypes (both susceptible to 2,4-D) of giant ragweed

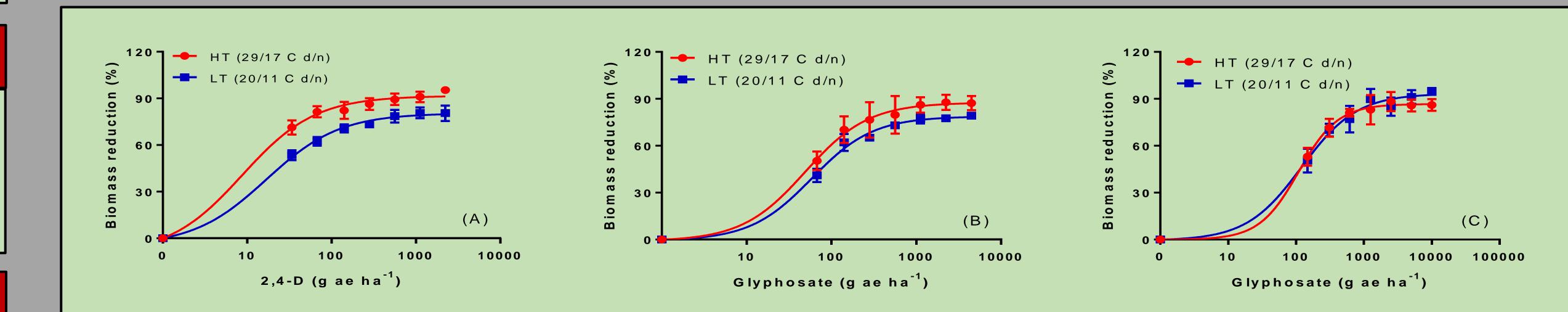


Figure 3. Dose-response curves based on biomass reduction of giant ragweed at two different temperatures (⁰C, day/night): high temperature (HT) 29/17; and low temperature (LT) 20/11; (A) 2,4-D, (B) glyphosate on glyphosate-susceptible, and (C) glyphosate on glyphosate-resistant giant ragweed.

- 2,4-D dose-response study suggested ED₉₀ of 49 (±2) and 792 (±192) g ae ha⁻¹ based on estimates of giant ragweed control at HT and LT, respectively (Figure 2A).
- Glyphosate dose-response study suggested ED₉₀ of 244 (±35) and 468 (±168) g ae ha⁻¹ for susceptible biotype (Figure 2B, 3B) and 5,751 (±1,445) and 66,207 (±20,918) g ae ha⁻¹ for resistant biotype (Figure 2C, 3C) at HT and LT, respectively.
- The level of resistance in glyphosate-resistant giant ragweed biotype reduced from 141× at LT to 23× at HT.
- Similarly, previous studies have reported higher efficacy of 2,4-D (Kelly 1948) and glyphosate (Jordan 1977) at warm temperatures (≥ 25 °C) compared to cool temperatures (< 20 °C).

were used.

- Plants were treated at 8 to 12 cm height with 2,4-D or glyphosate rates varying from 0.06x to 8x (1x of 2,4-D and glyphosate were 560 and 1,260 g ae ha⁻¹, respectively).
- Control estimates and aboveground biomass reduction (21 days after treatment) data were fit to a four-parameter log logistic model in *drc* package of R.

Absorption and translocation experiments:

- Absorption and translocation studies were conducted by applying approximately 200,000 disintegrations per minute (dpm) ¹⁴C-labelled 2,4-D or glyphosate on a newly mature leaf of 8 to 12 cm plants grown at LT and HT.
- Plants were harvested at 24, 48, 72 and 96 h after treatment and separated into treated leaf (TL), tissues above the TL, and below the TL.
- Treated leaves were washed with 5 ml wash solution (10% methanol and 0.05% polysorbate 20) for 1 min to measure unabsorbed radiolabeled herbicide.
- Plant sections were dried at 60 °C for 48 h and radioactivity absorbed or translocated was recovered by combusting the samples in biological oxidizer and quantified by liquid scintillation spectrometry.
- Herbicide absorption was calculated as; % absorption = (total radioactivity applied–radioactivity recovered in wash solution) × 100/total radioactivity applied;
- Herbicide translocation was calculated as; % translocation = 100–% radioactivity recovered

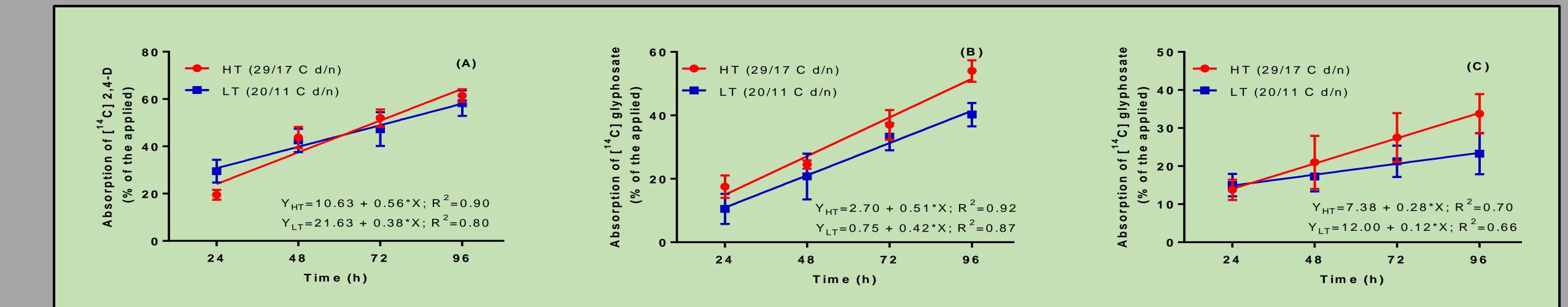
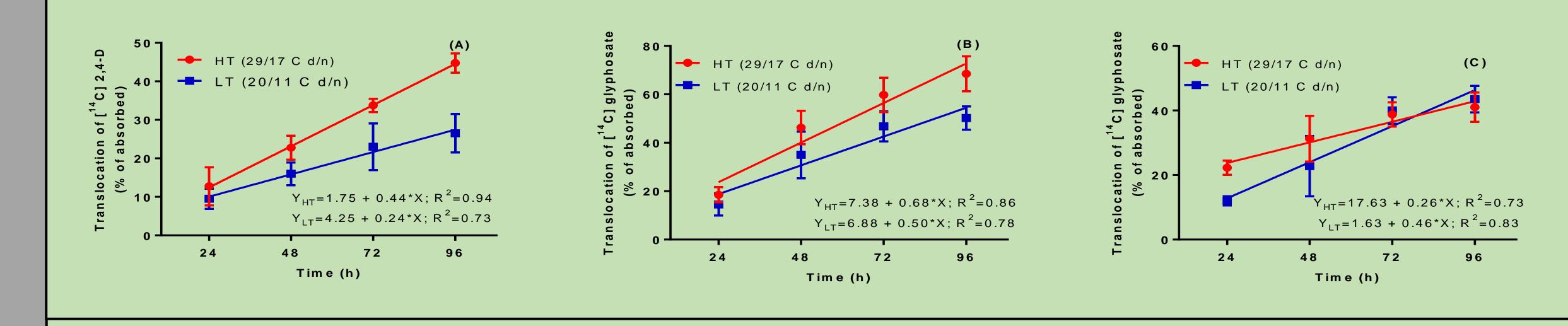



Figure 4. Absorption of 2,4-D or glyphosate in giant ragweed at two temperatures (°C, day/night): high temperature (HT) 29/17; low temperature (LT) 20/11. (A) 2,4-D absorption; (B) glyphosate absorption in glyphosate-susceptible, and (C) glyphosate absorption in glyphosate–resistant biotype.

in TL, where % radioactivity in TL = radioactivity in TL × 100/ radioactivity absorbed.
Data were analyzed in R using a linear regression model, y = a + bx, where y = response (% absorption or translocation), a = intercept and x = time after treatment.

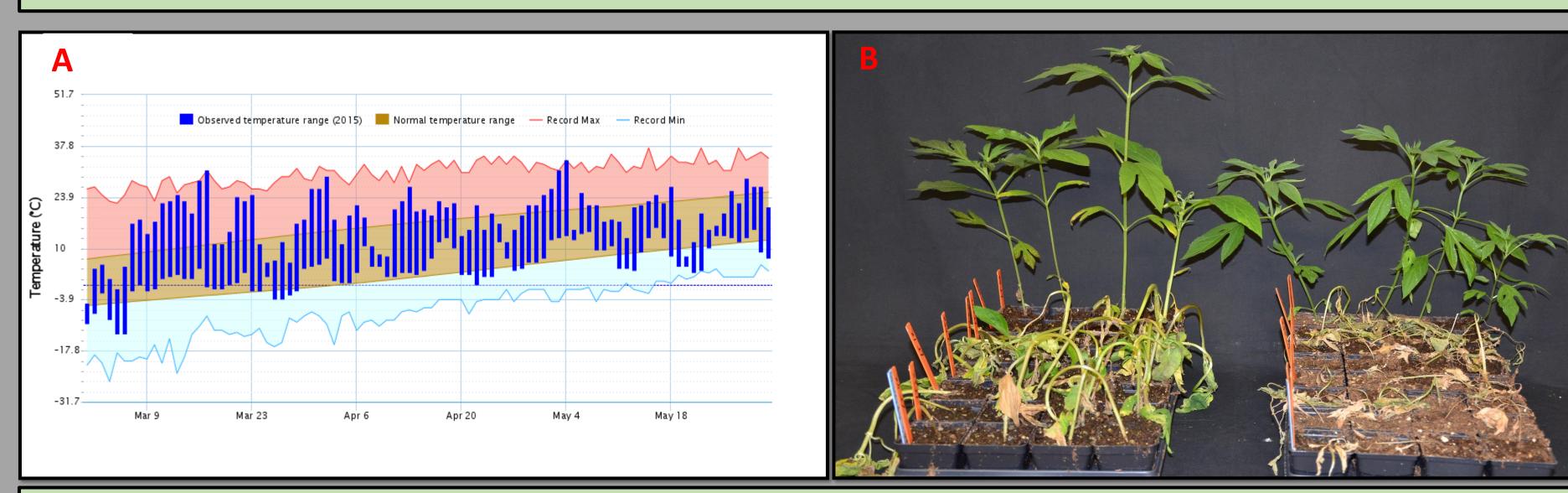


Figure 1. (A) Daily average temperature (⁰C) from March to May in south-central Nebraska in 2016; (B) 2,4-D doseresponse on giant ragweed at HT (29/17 ⁰C d/n) and LT (20/11 ⁰C d/n) Figure 5. Translocation of 2,4-D or glyphosate in giant ragweed at two temperatures (°C, day/night): high temperature (HT) 29/17; low temperature (LT) 20/11. (A) 2,4-D translocation; (B) glyphosate translocation in glyphosate-susceptible, and (C) glyphosate translocation in glyphosate—resistant biotype

Absorption and translocation experiments indicated higher translocation for both 2,4-D (Figure 5A) and glyphosate (Figure 5B and 5C) at HT compared to LT.

Conclusions and Future Direction

The efficacy of 2,4-D and glyphosate on giant ragweed control improved at warm temperatures (29/17 °C d/n) (Figure 2 and 3) due to increase in translocation of these herbicides (Figure 5) compared to cooler temperatures (20/11 °C d/n). Further investigation including metabolism (2,4-D), and gene expression (*EPSPS* gene) is needed to fully understand the molecular basis of differences in 2,4-D or glyphosate efficacy under varying temperatures.

Literature Cited

Ganie et al. (2016) Weed Tech 30:45–56 Jordan TN (1977) Weed Sci 25:448–451 Kaur et al. (2016) Can J Plant Sci 96:726–729 Kelly S (1949) Plant Physiol. 24:534–536