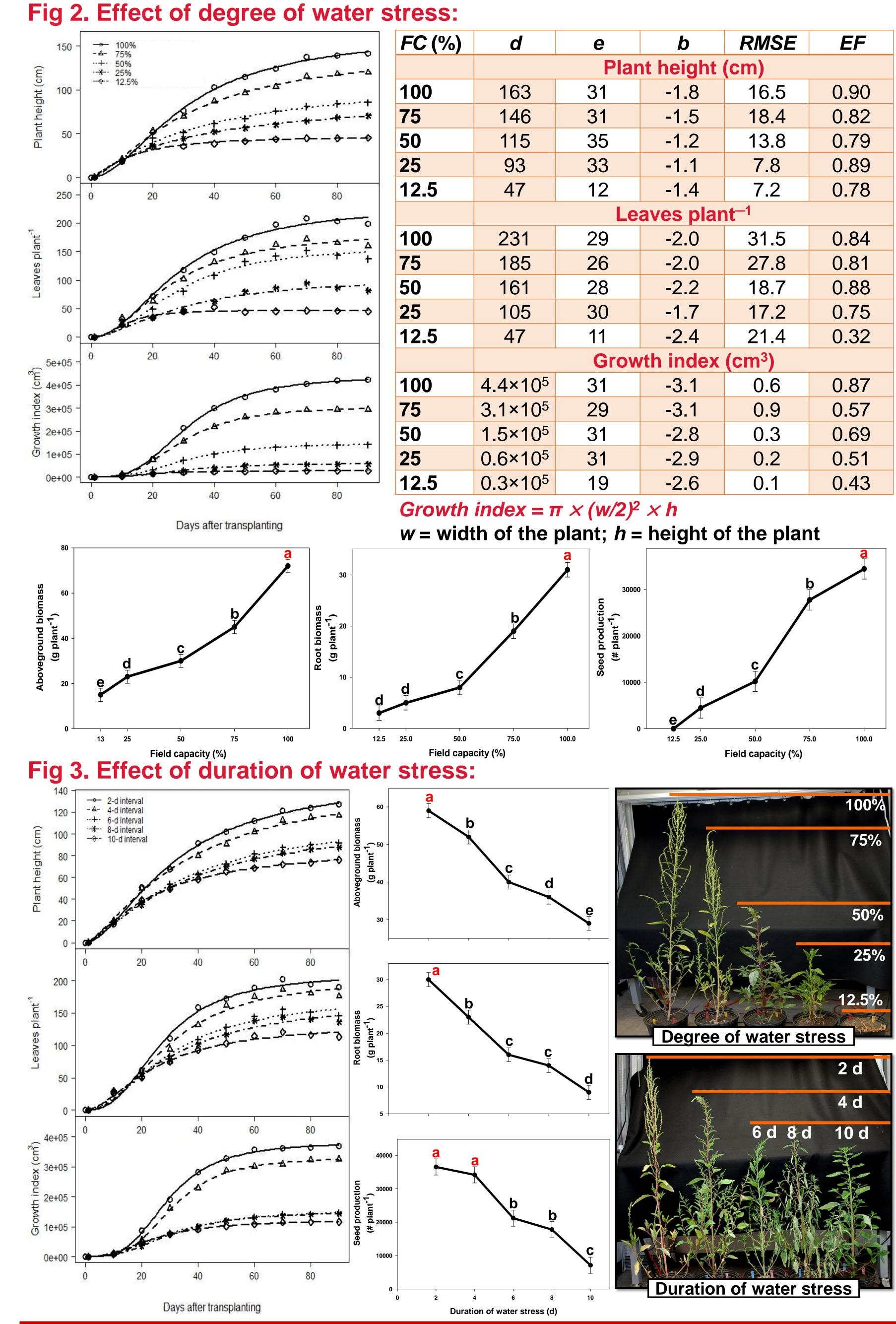
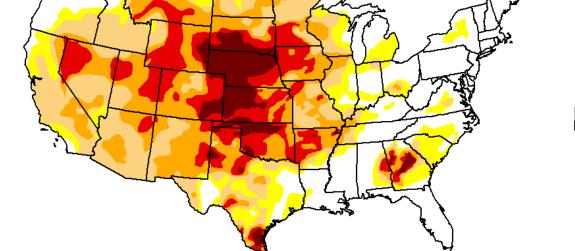
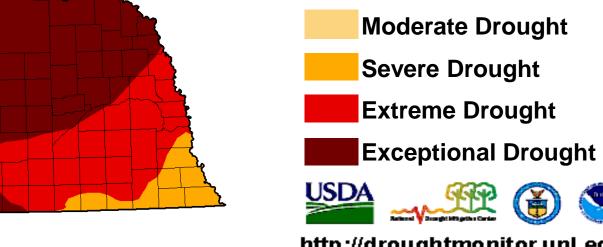
Response of Common Waterhemp (Amaranthus rudis) to Water Stress Debalin Sarangi*, Suat Irmak, John L. Lindquist, Stevan Z. Knezevic, and Amit J. Jhala **University of Nebraska–Lincoln, USA**

*debalin.sarangi@huskers.unl.edu


Introduction


- Common waterhemp (*Amaranthus rudis* Sauer), a C₄ broadleaf summer annual weed, is the most encountered and troublesome weed in row-crop production systems in the Midwestern United States (Sarangi et al. 2015).
- Favorable biological attributes (rapid growth habit, extended period of emergence, and prolific seed production) and the rapid evolution of herbicide resistance make common waterhemp very competitive.
- Water is the most limiting factor for crop production in the Great Plains and Midwest.


Fig 1. Drought in Nebraska (2012)

Intensity Abnormally Dry

Results

• The objective of this study was to determine the effect of degree and duration of water stress on the growth and fecundity of common waterhemp.

Materials and Methods

- Two separate experiments: degree and duration of water stress
- Two biotypes: from Lancaster and Clay County
- Greenhouse experiments (in 2013 and 2014) were laid out in a randomized complete block design with six replications. n:
- Field (pot) capacity determination:
 - Pots were filled with 10 kg of finely ground dry soil.
 - Weight of the pots was measured.
 - Pots were watered to saturation and covered.
 - They were allowed to drain for 36 hrs., and reweighed.
- Field capacity, $FC = [(W_w W_d) / d]$

	Soil informatio	
	Silt-loam	
	Sand- 22%	
	Silt- 54%	
	Clay- 24% OM- 2.8%	
	OM- 2.8%	
.	BD- 1.4 g cm ⁻³	

 W_{w} = wet weight; W_{d} = dry weight; d = density of water

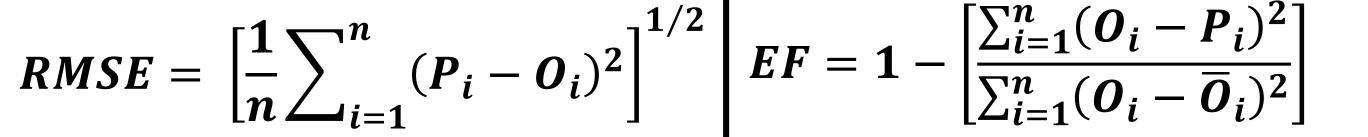
Treatment details:

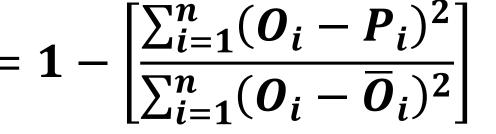
	Degree of water stress	Duration of water stress
1.	100% Field capacity	2 days interval
2.	75% Field capacity	4 days interval
3.	50% Field capacity	6 days interval
4.	25% Field Capacity	8 days interval
5.	12.5% Field Capacity	10 days interval
- Water was applied at 2 days interval		- 100% Field capacity water was applied

- **Observations:** Plant height, leaves plant⁻¹, growth index, biomass, seeds plant⁻¹
- Data were subjected to ANOVA; and a four-parameter log-logistic sigmoid growth function was regressed on growth parameters in R stat.

 $Y = c + \{d - c / 1 + exp[b(log x - log e)]\}$

where, Y = growth parameters, c = lower limit, d = maximum value, e = time to reach 50% of the maximum value, b = relative slope around e


• Model goodness of fit:


where,

Conclusions

- Water stress can affect the growth and seed production of waterhemp.
- Under higher level of water stress (25% FC or 10-d interval) waterhemp plants not only survived, but also produced significant amount of seeds. Literature cited:

Sarangi D, Sandell LD, Knezevic SZ, Aulakh JS, Lindquist JL, Irmak S, Jhala AJ (2015)

n = total #obs.

