

EXTENSION

Effect of Degree of Water Stress on the Growth and Fecundity of Palmer amaranth

Parminder S. Chahal*, Suat Irmak, and Amit J. Jhala **University of Nebraska-Lincoln** *Email: parminder.chahal@huskers.unl.edu

Introduction

- Water is one of the most limiting factors for optimum crop production and plant species respond differently to water stress conditions.
- Palmer amaranth is the most problematic weed in agronomic crop production fields in the United States.
- Being a C_4 species, Palmer amaranth can adapt to drought/water stress conditions using drought tolerance (Ehleringer 1983). Limited information is available in the scientific literature regarding the
- (A) 00% Field Capapcity (FC) a< 200 Ê ²⁴⁰ **(B)**

growth response of Palmer amaranth to different water stress levels. This information may be useful for evaluating weed-crop interaction using competition models.

Objective

To determine the effect of degree of water stress on the growth and fecundity/seed production of Palmer amaranth biotypes.

Hypothesis

Palmer amaranth plants maintained at the lowest water stress will have the highest growth and seed production than the plants maintained at highest water stress levels.

Materials & Methods

Location – Greenhouse, Lincoln, Nebraska- 2016. **Treatment Information** –

Palmer amaranth plants from two different biotypes (collected from Shickley and Kearney, NE) were grown in the soil maintained at 100%,

Fig 2. Effect of degree of water stress on Palmer amaranth (A) number of leaves produced plant⁻¹, (B) plant height, and (C) growth index in a greenhouse study conducted in Nebraska.

1000

Fig 4. Effect of water stress on Palmer amaranth growth at (A) 42 d and (B) 70 d after transplanting, and (C) effect on root growth at harvest.

Results and Discussion

- The model efficacy coefficients for curves fitted to leaf number, plant height, and growth index were > 0.90, indicating that fitted model was correct.
- No differences were observed between two Palmer amaranth biotypes and experimental runs for growth and seed production; therefore, data were combined over biotypes and runs.
- Palmer amaranth plants maintained at $\leq 25\%$ FC did not survive more than 35 d after transplanting and were not able to produce seeds. Model predicted that plants at 100, 75, and 50% FC produced a maximum of 588 to 670 leaves plant⁻¹. However, plants at 25 and 12.5% FC produced only 60 to 68 leaves plant⁻¹ (Fig 2A). Similarly, plants maintained at \geq 50% FC had the highest total leaf area of 571 to 693 cm² plants⁻¹ and leaf biomass of 5.4 to 6.4 g plants⁻¹ (Fig 3A; 3B). Plants at 100% FC achieved maximum height of 178 cm compared to

75%, 50%, 25%, and 12.5% of the soil field capacity (FC) using moisture sensors in 20 cm wide and 40 cm deep plastic pots. **Treatment Application** –

- 10 kg of loam soil (sand 37%, silt 44%, clay 19%) was filled in each pot and one 6-8 cm tall plant was transplanted. Gravimetric FC of soil (by weight) = 28% or 33.5% by volume. Total 4 reps for each treatment. A Watermark sensor was buried in each pot for 100% and 75% FC and one Decagon 5TE sensor for 50%, 25%, and 12.5% FC treatments to maintain the desired soil water content.
- A retention curve was developed for soil using the Soil-Water Characteristics Software to convert the Watermark sensors-measured matric potential values to volumetric water content (Irmak et al. 2016). % Volumetric water content = -5.818 * In(soil matric potential) + 51.228

Fig 1. Palmer amaranth plants were maintained at desired water stress levels using (A) Watermark and Decagon 5TE sensors, and daily soil moisture level was recorded from (B & C) Watermark data loggers and (D) Decagon data loggers in each pot and required amount of water was added.

124 cm height at 75%, 88 cm at 50%, and 25 to 36 cm at 25 and 12.5% FC (Fig 2B; 4A; 4B). Similarly, growth index did not vary (1.1 to $1.4 \times 105 \text{ cm}^3 \text{ plant}^{-1}$) among 100, 75, 50% FC treatments (Fig 2C). Plants at 100% FC produced 38 g aboveground biomass plant⁻¹ compared to 25 to 27.6 g at 75 and 50% FC and 4.5 to 5 g at 25 and 12.5% FC (Fig 3C). Plants at \geq 50% FC capacity produced dry root biomass of 2.3 to 3 g plant⁻¹ compared to 0.6 to 0.7 g plant⁻¹ at 25 and 12.5% FC (Fig 3D).

- The seed production was greatest (42,000 seeds plant⁻¹) at 100% FC compared to 75 and 50% FC (14,000 to 19,000 seeds plant⁻¹) (Fig 3E). A cumulative seed germination was similar (18 to 26%) when plants were exposed to \geq 50% FC.
- Similarly, Sarangi et al. (2015) reported highest common waterhemp (Amaranthus rudis Sauer) plant height, seed production plant⁻¹, and total aboveground biomass at 100% field capacity.
- However, spiny amaranth (Amaranthus spinosus L.) produced greatest height of 128 to 137 cm at 100 and 75% FC compared to 73 cm at 50% FC (Chauhan and Abugho 2013).

Conclusions

Data Collection and Statistical Analysis –

- Daily Observations Water content per pot from data loggers (Fig 1). Periodic observations – Plant height, plant width, and leaves per plant were recorded every 7 d from 21 to 77 d after transplanting. Growth Index was calculated using following equation (Irmak et al. 2004): Growth Index $(cm^3) = 3.14 * (width/2)^2 * Height$
- Observations at Harvest Leaf area index, seed weight, seed number, seed germination, leaf and shoot biomass weight.
- Data were subjected to ANOVA using PROC GLIMMIX in SAS (9.3). A four-parameter log-logistic sigmoid growth function was regressed on leaves per plant, plant height (cm), and growth index (cm³) for each water stress treatment at different d after transplanting using R statistical software.

Water stress treatment

Fig 3. Effect of degree of water stress on Palmer amaranth (A) leaf area plant⁻¹, (B) leaf biomass plant⁻¹, (C) aboveground biomass plant⁻¹, (D) root biomass plant⁻¹, and E) seed production plant⁻¹ at harvest.

Palmer amaranth growth and seed production was affected by degree of water stress and it has capacity to survive and reproduce under low (100% FC) to moderate (50% FC) water stress.

Future Research

To evaluate the effect of different durations of water stress on growth and fecundity of Palmer amaranth.

Literature Cited

Chauhan BS, Abugho SB (2013). Am J PI Sci 4:989-998 Irmak S, Haman DZ, Irmak A, Jones JW, Campbell KL, Crisman TL (2004). HortSci 39:1445-1455

Irmak S, Payero JO, VanDeWalle B, Rees J, Zoubek G, Martin DL, Kranz WL, Eisenhauer D, Leininger D (2016). Nebraska Extension Circular (EC783). Ehleringer J (1983). Oecologia 57:107–112 Sarangi D, Irmak S, Lindquist JL, Knezevic SZ, Jhala AJ (2015). Weed Sci 64:42-52