CONTENTS

Invited session

Scientific Prize "Professor Jozev Van den Brinde"

I.L. Gullino, C. Cline & A. Garibaldi
Life without methyl bromide: the Italian experience in replacing the fumigant

Biological and Integrated Control, Fungicide & General Plant Pathology

J. Bakker, F. M. J. Van Loon & J. H. M. Schneider
Soil suppressiveness to Rhizoctonia solani and microbial diversity

J. M. Fontanilla, M. Montes & R. De Prado
Induction of resistance to the pathogenic agent Botrytis cinerea in the cultivation of the tomato by means of the application of the protein "Harpin" (Messenger®)

J. M. Fontanilla, M. Montes & R. De Prado
Effects of the foliar-applied protein "Harpin®" (Messenger®) on tomatoes infected with Phytophthora infestans

R. Lahlali, M. N. Serrhini & M. H. Jijacli
Development of a biological control method against postharvest disease of citrus fruits

U. Kumar, S. Kumar, K. Tyagi, R. Chand & A. K. Joshi
Microsatellite markers for resistance to spot blotch in spring wheat

S. Van Laer, K. Hauke, P. Meesters & P. Creemers
Botrytis infection warnings in strawberry: reduced enhanced chemical control

R. Fiaccadori, E. Cicognani, A. Abbatecola, M. Collina & A. Brunelli
Sensitivity of Venturia inaequalis to strobilurin fungicides in Italy

B. Vorstermans, P. Creemers, D. Bylemans & A. Garnier
A new post-harvest fungicide to control fruit rot on apple and pear

J-M. Moreau, B. Bodson, H. Mariale & F. Vancutsem
Individual and combined effects of dosages of azoxystrobin and exopiconazole in wheat

B. Cottyn, K. Vanhouteghem, J. Heyrman, P. Bleyaert, J. Van Vaerenbergh, P. De Vos, M. Höfte & M. Maes
Global overview of butterhead
H. Huvenne, E. Messens & M. Maes
Watermark disease in willow and its relation to Brenneria salicis dominance in the wood

I. Fekih Hassen, S. Roussel, J. Kummert, H. Fakhfakh, M. Marrakchi & M.H. Jijakli
Detection and epidemiological characteristics of peach latent mosaic viroid in Tunisia

S. Isebaert, G. Haesaert, R. Devreese, P. Maene, F. Fremaut & G. Vlaemynck
Fusarium spp. and Fusarium mycotoxins in maize: a problem for Flanders?

A. Bohlooli, S.M. Okhovvat & M. Javan-Nikkhah
Identification of anastomosis group of Rhizotonia solani, the causal agent of seed root and damping-off of bean in Iran

Selection of antagonists of postharvest apple parasites: Penicillium expansum and Botrytis cinerea

H. Afsharanesh, M. Ahmadzadeh, A. Sharifi-Tehrani, M. Javan-Nikkhah & K. Ghazanfari
Contribution of phIA and some metabolites of fluorescent Pseudomonads to antifungal activity

F. Flume & G. Flume
Biological control of Botrytis gray mould and Sclerotinia drop in lettuce

J. Hysek, M. Vach & M. Javurek
Biological protection of the main cereals against fungal specific diseases

Optimization of biological control of fungal root diseases in tomato in stonewool culture

B. Heremans, S. Demeulemaere & G. Haesaert
Suppression of Fusarium wilt by combining green compost and Trichoderma hamatum

H. Kurzawinska & J. Duda
Biotic relation between Fusarium oxysporum Schlecht. and fungi isolated from the substrate of Stewartia pseudocamellia (Max.)
Sharifi-Tehrani, M. Shakiba, M. Okhovat & Z. Zakeri
Biological control of Tiarospora phsealina the causal agent of charcoal rot of soybean 189

T. Wojdyla
Activity of plant and mineral oils in the control of Puccinia pelargonii-zonalis 193

Callens, R. Sarrazyn & W. Evens
Signum, a new fungicide for control of leaf diseases in outdoor vegetables 199

Lefrancq & M. Lateur
Use of fungicides against powdery mildew during an artificial scab inoculation test in an apple breeding programme focused on partial resistance 209

A.I. Badawy, E.I. Rabea, W. Steurbaut, T.M. Rogge, C.V. Stevens, Smaghe & M. Höfte
Fungicidal activity of some O-acyl chitosan derivatives against grey mould Botrytis cinerea and rice leaf blast Pyricularia grisea 215

A. Rabea, M.E.I. Badawy, W. Steurbaut, T.M. Rogge, C.V. Stevens, Smaghe & M. Höfte
Fungicidal effect of chitosan derivatives containing an N-alkyl group on grey mould Botrytis cinerea and rice leaf blast Pyricularia grisea 219

Ehsanfar & S.A.M. Modarres-Sanavy
Crop protection by seed coating 225

T. Wojdyla
Tolyflurid + tebuconazole in the control of some ornamental foliage diseases 231

Nawrocki & S. Mazur
The biological evaluation of Zato 50WG in protection of carrot against Alternaria blight 241

A. Achbani, M. Hafidi, B. Abdellatif, N. Lamaaraf, B. Kouta, N. Iaflle, R. Corbière & D. Andrivon
Potato late blight in Morocco: characterization of Phytophthora infestans populations (virulence and mating type) 247

Aldaghi, J. Kummert, S. Roussel & M.H. Jijakli
A molecular investigation to identify phytoplasmas associated with fruit trees 253

Ale-Agha, G.B. Feige, M. Jensen, M. Brassmann & R. Kricke
Surveys of new and rare microfungi in the Düsseldorf (North Rhine-Westphalia) – Germany 257
G.B. Feige, N. Ale-Agha, M. Jensen, M. Brassmann, B. Christiaans & R. Kricke
New, rare and remarkable records of microfungi from the Slovakian republic 269

M.A. Amer
Allatoxin contamination of developing corn kernels 281

M. Davari & B. Askari
Armillaria mellea as a cause of oak decline in Hatam-Baigh forest of Iran 295

M. Faraji & S.M. Okhovvat
Pathogenicity of two species of Fusarium on some cultivars of bean in greenhouse 305

R. Hemmati, M. Javan-Nikkah, S.M. Okhovvat & K. Ghazanfari
Study on genetic diversity of Magnaporthe grisea using PCR and determination of the mating type alleles distribution in Mazandaran province, Iran 311

M. Faraji & S.M. Okhovvat
Susceptibility of six cultivars of bean to different isolates of two species of Fusarium in greenhouse 315

S.M. Okhovvat, Z. Zakeri & R. Moshashai
The causal agents of damping-off disease of buglosse from Iran 319

S.J. Sanei, S.M. Okhovvat, M. Javan-Nikkah & H. Saremi
Vegetative compatibility and pathogenecity of Verticillium dahliae Kleb. isolates from olive in Iran 323

M. Sheikholeslami, M. Seidel, S.M. Okhovvat, Gh. Hedjaroude & M. Javan-Nikkah
Study of DNA diversity of Iranian populations of Erysiphe betae causel agant of sugar beet powdery mildew 327

M. Sheikholeslami, S.M. Okhovvat, Gh.A. Hedjaroude, A. Sharifi-Tehran & M. Javan-Nikkah
Study on the overwintering of cleistothecia and conidia of Erysiphe betae causel agent of sugar beet powdery mildew in Iran 333

Treatments with gras compounds to keep fig fruit (Ficus carica L.) quality during cold storage 339
Zs. Varga & G. Fischl
Infection rates of perennial ryegrass seeds (Lolium perenne L.) with different fungi 345

A. La Torre, A. Leandri & D. Lolletti
Comparison of health status between organic and conventional products 351

M.G. Molinu, G. D'hallewin, A. Dore, A. Serusi, T. Venditti & M. Agabbio
Carbonic acid salts at 25 or 45°C to control loquat decay under self life conditions 365

A. La Torre, G. Spera & D. Lolletti
Grapevine downy mildew control in organic farming 371

M.A. Amer
Reaction of selected soybean cultivars to Rhizoctonia root rot and other damping-off disease agents 381

G. Arras, G. D'hallewin, A. Petretto, S. Marceddu, M. Loche & M. Agabbio
Biological and physical approaches to improve induced resistance against green mold of stored citrus fruit 391

A. Salehi, M. Mohammadi, S.M. Okhovvat & M. Omid
Chitinase gene transformation through Agrobacterium and its explanation in soybean in order to induce resistance to root rot caused by Rhizoctonia solani 399

N. Esfandiari, M. Kohi Habibi, Gh.H. Mosahebi & J. Mozafari
Detection of alfalfa mosaic virus (AMV) in pea field in Iran 407

N. Esfandiari, M. Kohi Habibi, Gh.H. Mosahebi & J. Mozafari
First report of occurrence of two viruses in pea field in Iran 411

N. Hamzeh, M. Kohi Habibi, Gh. Mosahebi & K. Ghazanfari
Identification of PVY-N on potato and tobacco in Tehran and Mazanderan provinces 417

Gh. Mosahebi, A. Ahoon-Manesh, A. Sharifi-Tehrani, M. Mohammadi & S.M. Okhovvat
Occurrence and physico-serological properties of potato virus s (PVS) in Iran 423

S.M. Damadi, Gh.H. Mosahebi & M. Okhovvat
Purification of potato virus x and preparation of its antiserum 427
Determination of the races of potato virus x and its host range in Karag, Damavand and Ardabil, Iran

A.P. Takacs, J. Horvath, G. Kazinczi & R. Gaborjanyi
Susceptibility of some Lycopersicon species and varieties of cucumber mosaic virus (CMV) and tobacco mosaic virus (TMV)

Gh. Mosahebi, M. Koohi-Habibi & S.M. Okhovvat
Study on potato virus m (PVM) occurrence in potato fields in Iran

Herbology

A. Lombard, C. Gauvrit & B. Chauvel
Chemical control of Ambrosia artemisiifolia on non-crop areas: are there alternatives to glyphosate?

S. Poienaru, N. Sarpe & I. Sarpe
The chemical control of Sorghum halepense (Johnson grass) in soybean culture in the Danube meadow

S. Poienaru, N. Sarpe & I. Sarpe
The chemical weed control of maize culture in the Danube meadow

S. Poienaru, N. Sarpe & I. Sarpe
The chemical control of Sorghum halepense species in sunflower culture, in the Danube meadow

I. Beres, D. Szente, V. Gyenes & I. Somlyay
Weed control of sunflower (Helianthus annuus L.) with post-emergent herbicides

V. Gyenes, I. Beres, E. Lehoczky, G. Kazinczi & A. Nyari
Vegetative reproduction and chemical control with post-emergent herbicides of field bindweed (Convolvulus arvensis L.)

G. Kazinczi, A.P. Takacs, J. Horvath, R. Gaborjanyi & I. Beres
Susceptibility of some weed species to pepino mosaic virus (PEPMV)

A. Jhala, P.H. Rathod, K.C. Patel & P. Van Damme
Growth and yield of groundnut (Arachis hypogaea L.) as influenced by weed management practices and Rhizobium inoculation

E. Mechant, R. Bulcke & L. Maeghe
Resistance to metamitron in Chenopodium album from sugar beet. A tale of the (un)expected?

P. Michitte, R. De Prado, N. Espinosa & C. Gauvrit
Glyphosate resistance in a chilean Lolium multiflorum
GROWTH AND YIELD OF GROUNDNUT (ARACHIS HYPOGAEA L.) AS INFLUENCED BY WEED MANAGEMENT PRACTICES AND RHIZOBIUM INOCULATION

A. JHALA*, P.H. RATHOD, K.C. PATEL & P. VAN DAMME*
AICRP on Weed Control, B.A. College of Agriculture,
Gujarat Agricultural University, Anand-388 110, Gujarat, India
*Laboratory for Tropical & Subtropical Agriculture and Ethnobotany,
Department of Plant Production (BW 02), Faculty of Bioscience Engineering,
Ghent University, Coupure links 653, BE-9000, Belgium
E-mail: amit_jhalat@yahoo.co.in

ABSTRACT

Groundnut (Arachis hypogaea L.) productivity in India is low, because of many problems beset in its cultivation. One of the serious problems are weeds. Groundnut yield losses due to weeds have been estimated as high as 24 to 70 percent. This has created a scope for using herbicides in groundnut crop. A field investigation was carried out during kharif (rainy) season of 2001-2002 on a sandy loam soil at College Agronomy Farm, B.A. College of Agriculture, Gujarat Agricultural University, Anand, India to study the effect of weed management practices and Rhizobium inoculation on growth and yield of groundnut (Arachis hypogaea L.). Ten weed control treatments, comprising four treatments of sole application of fluchloralin, pendimethalin, butachlor and metolachlor, respectively each applied at 1.0 kg ha⁻¹; four treatments comprising of an application of the same herbicides at the same levels coupled with one hand weeding at 30 DAS; one weed-free treatment (hand weeding at 15, 30, 45 DAS); and one unweeded control. All 10 treatments were combined with and without Rhizobium inoculation (i.e. a total of 20 treatment combinations) under a factorial randomized complete block design (FRBD) with four replications.

Minimum weed dry matter accumulation (70 kg/ha) with higher weed control efficiency (80-70 %) was recorded under an integrated method i.e. pendimethalin at 1.0 kg ha⁻¹ + hand weeding at 30 DAS, which also resulted in maximum pod yield (1773.50 kg ha⁻¹). This treatment was comparable to fluchloralin applied at 1.0 kg ha⁻¹ combined with hand- weeding at 30 DAS. Weedy conditions in the unweeded control treatment reduced pod yield by 29.90-35.95 % as compared to integrated method. Significantly higher pod yield was obtained with Rhizobium inoculation than the mean value of all treatments without inoculation. For most agronomical parameters examined, Rhizobium inoculation and weed control treatments were independent in their effect.

INTRODUCTION

Groundnut, the kingpin among oilseed crops in India, alone occupies about 9.0 million hectares of land (45% of total oil seed area) and accounts for 8.2 million tonnes of oil seeds (55% of total Indian oil seed production) both of which are claimed to be world’s largest figures obtained in any country. Paradoxically, India is one of the largest importers of edible oil because total production does not meet local demand. As groundnut is predominantly grown as rainfed crop under various biotic and abiotic stresses, yields are low. However, it is quite important in India both for local use and as a foreign exchange earner in the form of hand-picked selection (Hps) kernels and deoiled cakes. Groundnut is mainly grown during the rainy season. There-
fore it encounters several weeds since annual grasses and seasonal broadleaf weeds grow more luxuriantly and dominate during this season as compared to Rabi (winter)/the drier (summer) season. Weed competition in early stages of groundnut crop development is maximum because of slow initial foliage growth limited by the degradation of food reserves in the cotyledons. Although emergence of radicle in groundnut is fast (24-48 h), definitive root development is slow (5-10 days). Only when roots are capable of absorbing nutrients, the epicotyl is exposed to light in groundnut, whereas the situation is opposite in the case of weeds which emerge faster and grow more rapidly as compared to groundnut and consequently take a lead in crop weed competition. The critical period of weed competition is estimated to lie within 2 to 6 weeks after sowing. Minimizing crop-weed competition particularly at early stages of growth, the yield could be improved by about 20-30% (Yaduraju, 1980 and Patel et al., 1997).

With ever-increasing costs of nitrogenous fertilizers, greater emphasis has gone to the use of alternative and renewable sources of nitrogen. Biological nitrogen fixation through micro-organisms as bio-fertilizers is a cheap and supplementary source of nitrogen. Certain micro-organisms present in the soil have the ability to convert atmospheric N₂ into ammonia (N fixation) which is readily absorbed by plants. *Rhizobium*, is a root nodule bacterium that engages in a mutually beneficial association (symbiosis) with legumes and fixes nitrogen. Groundnut, being a leguminous crop can fix atmospheric nitrogen through its symbiosis with *Rhizobium*. *Rhizobium* inoculation has been shown to increase pod yield in groundnut (Patel and Thakur, 1997 and Samui, 1997). By keeping the above points in mind, the present investigation was conducted to study both independent and interaction effects of a number of weed management practices and *Rhizobium* inoculation in groundnut.

MATERIALS AND METHODS

A field experiment was conducted at College Agronomy Farm, B.A. College of Agriculture, Gujarat Agricultural University, Anand, India during kharif (rainy) season of the year 2001-2002. The soil was sandy loam in texture, low in nitrogen (Kjeldhal method), medium in phosphorus (Olsen method) and high in potassium (Kjeldhal method). The study was carried out with a view to find out the efficacy of various pre-emergence herbicides for weed control in bunch type variety (GG-2) of groundnut (*Arachis hypogaea* L.). Ten weed control treatments comprising four treatments (W₁ to W₄) of sole application of pre-emergence herbicides fluchoralin, pendimethalin, butachlor and metolachlor, respectively, each applied at 1.0 kg ha⁻¹; four applications (W₅ to W₈) of the same herbicides at the same levels combined with one hand weeding at 30 DAS; one weed free treatment (W₉); hand weedicings at 15, 30, 45 DAS and one unweeded control (W₁₀). All 10 treatments were combined with (R) and without (R₀) *Rhizobium* inoculation (yielding a total of 20 treatment combinations) under a factorial randomized complete block design (FRBD) with four replications.

For treating 100 kg seeds of groundnut, a solution of 5% sugar was prepared in water. Two hundred grams of carrier-based *Rhizobium* culture was added to the sugar solution. Seeds were evenly spread on a cement floor/plythene
sheets and slugar solution was poured and evenly smeared on the seeds surface. Groundnut seeds were subsequently inoculated through direct coating with *Rhizobium* (10⁵ cells seed⁻¹). Seed inoculation was done 48 hours prior to sowing. Before coating with *Rhizobium*, seeds were moistened to allow *Rhizobium* culture to stick to the seeds. Herbicides were applied to the soil one day after sowing. Weed numbers were counted randomly by 0.25 m² quadrats from net plot areas at different three spots from each plot at 20, 40 DAS and at harvest and converted into number per m² area. Weed infestation was also assessed by measuring dry weight of seeds per plot at 20, 40 DAS and at harvest (Okugie and Ossom, 1988; Spandl et al., 1999). Weed control efficiency was calculated by using formula suggested by Mani et al. (1973).

\[WCE = \frac{DWC - DWT}{DWC} \times 100 \]

Where:
- WCE = weed control efficiency;
- DWC = dry weight of weeds from control plots (weedy check); and
- DWT = dry weight of weeds in treated plots.

Yield reduction (%) owing to the presence of weeds was estimated by using the formula developed by Gill and Kumar (1969) and expressed as weed index (WI):

\[WI = \frac{X - Y}{X} \times 100 \]

Where:
- WI = weed index (%);
- X = yield from weed free plot; and
- Y = yield from the treatment for which weed index is to be estimated.

Harvest index is the ratio of economic yield to biological yield per plot. It was calculated by using the formula given by Donald and Hamblin (1976).

\[HI = \frac{\text{Economic yield (kg/ha)}}{\text{Above ground biological yield}} \times 100 \]

Observation of number of nodules per plant was done at 45 and 60 DAS. Three groundnut plants from each net plot were randomly selected; plants were dug out with the help of kudali. Sufficient care was taken so that entire root system of the plant could be removed from soil without any injury to nodules. Plant root portions were kept in water to subsequently wash out soil particles. Thereafter, individual nodules were separated from the roots and counted for each plot. Average number of nodules per plant was recorded treatment wise. Statistical analysis of the data of various characters studied in the investigation was carried out through the statistical analysis of variance techniques as described by Panse and Sukhatme (1967).
RESULTS AND DISCUSSION

Weed Intensity (No m²) and Dry Weight (kg ha⁻¹)

Data on weed population and dry weight of weeds recorded at 20, 40 DAS and at harvest revealed that both parameters (Table 1) were significantly influenced by different weed control treatments. In general, all weed control treatments considerably reduced total weed population and dry weight as compared to weedy check.

Table 1. Weed intensity (No m²) and dry weight of weeds (kg ha⁻¹) as influenced by different weed control treatments and *Rhizobium* inoculation

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Weed intensity (No m²)</th>
<th>Weed dry weight (kg ha⁻¹)</th>
<th>WCE (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>20 DAS</td>
<td>40 DAS</td>
<td>At harvest</td>
</tr>
<tr>
<td>Weed Control Treatments (W)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>W₁: Fluchloralin at 1.0</td>
<td>11.45</td>
<td>24.45</td>
<td>39.25</td>
</tr>
<tr>
<td>W₂: Pendimethalin at 1.0</td>
<td>6.65</td>
<td>24.03</td>
<td>36.18</td>
</tr>
<tr>
<td>W₃: Butachlor at 1.0</td>
<td>18.50</td>
<td>30.75</td>
<td>50.43</td>
</tr>
<tr>
<td>W₄: Metolachlor at 1.0</td>
<td>17.72</td>
<td>30.50</td>
<td>44.95</td>
</tr>
<tr>
<td>W₅: Fluchloralin at 1.0 + HW</td>
<td>13.77</td>
<td>14.00</td>
<td>26.35</td>
</tr>
<tr>
<td>W₆: Pendimethalin at 1.0 + HW</td>
<td>9.87</td>
<td>10.60</td>
<td>19.95</td>
</tr>
<tr>
<td>W₇: Butachlor at 1.0 + HW</td>
<td>18.63</td>
<td>15.20</td>
<td>32.15</td>
</tr>
<tr>
<td>W₈: Metolachlor at 1.0 + HW</td>
<td>16.45</td>
<td>15.25</td>
<td>29.70</td>
</tr>
<tr>
<td>W₉: Weed Free</td>
<td>5.86</td>
<td>20.50</td>
<td>56.35</td>
</tr>
<tr>
<td>W₁₀: Weedy Check</td>
<td>234.43</td>
<td>235.50</td>
<td>264.28</td>
</tr>
<tr>
<td>S. Em. ±</td>
<td>2.90</td>
<td>1.47</td>
<td>2.29</td>
</tr>
<tr>
<td>CD at 5%</td>
<td>8.29</td>
<td>4.20</td>
<td>6.55</td>
</tr>
<tr>
<td>Rhizobium inoculation (R)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R₁: Without Rhizobium</td>
<td>34.82</td>
<td>43.30</td>
<td>68.91</td>
</tr>
<tr>
<td>R₂: With Rhizobium</td>
<td>35.61</td>
<td>40.46</td>
<td>61.01</td>
</tr>
<tr>
<td>S. Em. ±</td>
<td>1.30</td>
<td>0.66</td>
<td>1.02</td>
</tr>
<tr>
<td>CD at 5%</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
</tr>
<tr>
<td>Interaction (W x R)</td>
<td>NS</td>
<td>NS</td>
<td>9.27</td>
</tr>
<tr>
<td>C. V. %</td>
<td>20.09</td>
<td>8.58</td>
<td>9.35</td>
</tr>
</tbody>
</table>

HW = Hand weeding; DAS = Days after sowing; S. Em. = Standard error of mean; CD = Critical Difference; WCE = Weed control efficiency

Weed-free treatment (W₉) recorded minimum weed counts (5.66 m²) and dry weight of weeds (25.25 kg ha⁻¹) at 20 DAS followed by application of pendimethalin at 1.0 kg ha⁻¹ (W₂). Whereas pendimethalin at 1.0 kg ha⁻¹ along with one hand weeding, markedly reduced weed population and dry weight of weeds at 40 DAS (10.60 m², 27.50 kg ha⁻¹, respectively) and at harvest (19.95 No. m², 70.00 kg ha⁻¹). This was statistically followed by treatment H₅. This might be due to the fact that at higher concentration of pendimethalin, germinating weed seeds might have been killed resulting into lower weed populations. In general, herbicides combined with one hand weeding were most effective in suppression of weeds in terms of density and dry matter.
accumulation as compared to sole applications of herbicides. This indicated that superimposition of hand weeding or herbicide treatment done at 30 DAS was beneficial for the control of later emerged weeds. These results are in agreement with the findings of Pandey and Padhiyar (2000) and Attrade et al. (2001) who stated that integrated weed management with pre-emergence application of pendimethalin at 1.0-1.5 kg ha\(^{-1}\) followed by one hand weeding at 30 DAS was found effective in controlling weeds in kharif (rainy) groundnut in India. Pre-emergence application of butachlor and metolachlor each at 1.0 kg ha\(^{-1}\) was found to be inferior to pendimethalin (W\(_2\) & W\(_6\), Table 1) but performed better as compared to unweeded control in checking weed dry matter accumulation.

Weed Control Efficiency (WCE)

Highest weed control efficiency (90.70 %) was recorded under pendimethalin applied at 1.0 kg ha\(^{-1}\) + HW 30 DAS, closely followed by fluchloralin at 1.0 kg ha\(^{-1}\) + HW (86.97 %). Appreciably lower weed counts and dry weight of weeds at harvest resulted from timely removal of all categories of weeds at early as well as later stages of crop growth by supplementing hand weeding at 30 DAS. This result corroborates the findings of Murphy et al. (1994) and Pandey and Padhiyar (2000). Interaction of weed control treatments and *Rhizobium* inoculation on weed intensity, dry weight of weeds and WCE were found to be non-significant. Jhala et al. (2005) reported that pendimethalin was superior in controlling weeds as compared to other herbicide treat-

Root Nodule Counts (nodules/plant)

Mechanical treatments as well as herbicides combined with one hand weeding were effective with respect to higher number of root nodules per plant, i.e. 57.10 root nodules per plant at 60 DAS for treatment W\(_{10}\) (Figure 1) against treatment W\(_{10}\). This might be due to effective weed control whereas good physical condition of soil may also enhance micro-organism activity in soil. *Rhizobium* inoculation did show its significant influence. Higher number of root nodules were noticed with *Rhizobium* inoculation treatment as compared to without inoculation. Negre et al. (1991) and Patel and Patel (1989) have also reported the same effect of inoculation on groundnut root nodula-
Pod and Haulm Yields (kg ha$^{-1}$)

Weed control treatments significantly influenced pod and haulm yields (Table 2.), wherein pendimethalin at 1.0 kg ha$^{-1}$ supplemented with hand weeding (W6) produced significantly higher pod and haulm yields of 1773.50 and 3012.50 kg ha$^{-1}$, respectively, both these values being statistically at par with treatment W5 (1619.83 and 2946.00 kg ha$^{-1}$, respectively), W2 (1590.50 and 2812.50 kg ha$^{-1}$), W1 (1566.50 and 2807.00 kg ha$^{-1}$) and W3 (1474.50 and 2744.00 kg ha$^{-1}$). Pod and haulm yields under these treatments were 35.95% and 10.32% higher than unweeded control and pendimethalin applied at 1.0 kg ha$^{-1}$ alone, respectively. All other herbicides along with hand weeding were alike but significantly superior to unweeded control in respect to pod and haulm yields. This might be due to removal of later-emerged weeds by hand weeding at 30 DAS. Results further revealed that beneficial effect of loosening the soil by hand weeding, which appears to facilitate the entry of gynophores (needles or pegs) to proper depth in the soil and subsequent normal growth and development of pods. Unweeded control recorded lowest groundnut pod yield (1136.0 kg ha$^{-1}$) with 35.95% weed index (WI). This was probably due to strong crop-weed competition for growth factors such as moisture, nutrients and space (Jhala et al. 2005).
Table 2. Pod and haulm yields (kg ha⁻¹) as influenced by different weed control treatments and Rhizobium inoculation

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Yields (kg ha⁻¹)</th>
<th>HI (%)</th>
<th>WI (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pod</td>
<td>Haulm</td>
<td></td>
</tr>
<tr>
<td>Weed Control Treatments (W), Herbicides (kg ha⁻¹)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>W₁: Fluchloraín at 1.0</td>
<td>1566.50</td>
<td>2807.00</td>
<td>35.87</td>
</tr>
<tr>
<td>W₂: Pendimethalin at 1.0</td>
<td>1590.50</td>
<td>2812.50</td>
<td>35.11</td>
</tr>
<tr>
<td>W₃: Butachlor at 1.0</td>
<td>1474.50</td>
<td>2744.00</td>
<td>35.12</td>
</tr>
<tr>
<td>W₄: Metolachlor at 1.0</td>
<td>1411.50</td>
<td>2564.00</td>
<td>36.60</td>
</tr>
<tr>
<td>W₅: Fluchloraín at 1.0 + HW</td>
<td>1619.83</td>
<td>2946.00</td>
<td>35.72</td>
</tr>
<tr>
<td>W₆: Pendimethalin at 1.0 + HW</td>
<td>1773.50</td>
<td>3012.50</td>
<td>37.21</td>
</tr>
<tr>
<td>W₇: Butachlor at 1.0 + HW</td>
<td>1457.87</td>
<td>2716.33</td>
<td>35.59</td>
</tr>
<tr>
<td>W₈: Metolachlor at 1.0 + HW</td>
<td>1431.50</td>
<td>2650.00</td>
<td>35.11</td>
</tr>
<tr>
<td>W₉: Weed Free (HW at 15, 30, 45 DAS)</td>
<td>1452.34</td>
<td>2679.50</td>
<td>35.18</td>
</tr>
<tr>
<td>W₁₀: Weedy Check</td>
<td>1136.00</td>
<td>2346.50</td>
<td>32.78</td>
</tr>
<tr>
<td>S. Em. +</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CD at 5 %</td>
<td>39.24</td>
<td>110.23</td>
<td>1.23</td>
</tr>
<tr>
<td></td>
<td>112.37</td>
<td>315.87</td>
<td>NS</td>
</tr>
<tr>
<td>Rhizobium inoculation (R)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R₁: Without Rhizobium</td>
<td>1464.10</td>
<td>2697.80</td>
<td>35.25</td>
</tr>
<tr>
<td>R₂: With Rhizobium</td>
<td>1526.60</td>
<td>2767.90</td>
<td>35.56</td>
</tr>
<tr>
<td>S. Em. +</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CD at 5 %</td>
<td>17.55</td>
<td>49.30</td>
<td>0.55</td>
</tr>
<tr>
<td></td>
<td>50.25</td>
<td>NS</td>
<td>NS</td>
</tr>
<tr>
<td>Interaction (W x R)</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
</tr>
<tr>
<td>C. V. %</td>
<td>6.41</td>
<td>9.90</td>
<td>8.49</td>
</tr>
</tbody>
</table>

HI = Harvest index; WI = Weed index

It was observed that significantly (4.09%) higher pod yield was obtained when seeds were inoculated with Rhizobium over without inoculation. This was relevant to the findings of Patel and Thakur (1997). The absence of interaction effects indicated that both weed control treatments and Rhizobium inoculation have an independent effect on the crop. Data pertaining to harvest index (%) indicated that effect of different weed control treatments and Rhizobium inoculation, and interaction effects were not significant. However, the highest harvest index (HI) was recorded under treatment W₆ (37.21 %) followed by W₄ (36.60 %), whereas the lowest was obtained with weedy check treatment (32.78%) (Table 2).

CONCLUSION

Based on the results of our field experiment, minimum weed dry matter accumulation (70 kg ha⁻¹) with higher weed control efficiency (90.70 %) and harvest index (37.21) was recorded under an integrated method W₆ (i.e. pendimethalin at 1.0 kg ha⁻¹ + hand weeding at 30 DAS), which also resulted in maximum pod and haulm yields (1773.50 and 3012.50 kg ha⁻¹, respectively). Higher yield was obtained with Rhizobium inoculation than without inoculation. Unweeded control recorded lowest groundnut pod yield (1136.0 kg ha⁻¹) with 35.95% weed index (WI) and harvest index (32.78%). Interac-
tion effects of weed control treatments and *Rhizobium* inoculation on weed intensity, dry weight of weeds, WCE, pod and haulm yields were found to be non-significant.

REFERENCES

