Managing Biodegradable Mulch Films: Lessons from the Lab, Greenhouse, and Field

M. Benjamin Samuelson1, Rhae Drijber1, Ashley Thompson2, and Sam E. Wortman1
1University of Nebraska-Lincoln, 2Oregon State University Extension Service

Background

- Mulch films suppress weeds, control soil temperature, retain water, reduce nutrient leaching, and prevent crop-soil contact.
- Polyethylene films (material of garbage or grocery bag) are used most extensively. Annual cost of removal and disposal: $400±$100 /ac.
- Biodegradable mulch films can be incorporated into soil after each season. Various compositions are currently available including Bio360™ made of MaterBi™ biodegradable plastic resin (BP), and WeedGuard Plus™ made of paper (PA). New mulches are under development including papers that include degradable polyester fiber for increased strength and persistence, and polylactic acid (PLA) fabric loaded with organic particles of alfalfa, soy, or wood.

Objectives

The purpose of this poster is to outline practical principles for choosing and managing biodegradable mulches. We selected findings from three studies to answer the following questions:

- **Lab**: How rapidly can biodegradable mulches decompose? Can biostimulants accelerate the process?
- **Greenhouse**: Might soil-incorporated mulch residue affect subsequent crop yield? If so, how? Can compost extracts (CE) sprayed onto mulch before incorporation influence this relationship?
- **Field**: Do different mulch types result in differences in crop yield during mulch working life and after soil incorporation in the field? Will biodegradable mulches really decompose within two years?

Experiment: Mulches were treated with biostimulants and buried in soil in sealed jars (tables 1 and 2). We measured respiration (CO₂ production) and mulch mass loss.

Results: Mulch type had the greatest influence on mass lost after 16 weeks; PA was completely decomposed (figure 1) while mass was unchanged for PLA (figure 1) and BP. Mass loss in PLA-A and PLA-S was increased significantly by Extract PBA and Biocat 1000, respectively (figure 2). No significant biostimulant effect was found on respiration for any mulch (data not shown).

Lesson: Choice of mulch type, rather than biostimulant, will have greatest impact on mulch degradation in soil.

Greenhouse

Experiment: Lettuce growth was measured in greenhouses with 5 residues (alfalfa, straw, wood-particle-loaded PLA mulch (PLA-W), geotextile, none) treated with 5 sprays (table 3). Lettuce seeds were sown in 4” pots, harvested 42 days later.

Results & Discussion: No yield difference between controls (geotextile & no residue) indicates no effect due to physical traits of soil/mulch mixture. PLA-W reduced lettuce growth, and straw reduced growth further (figures 3 & 4), but at harvest no difference in soil NO₃ was present between straw, PLA-W, or controls. 3lb/ac total N was supplied by sprays, it was mostly organically bound in CE but soluble in urea which increased yield compared to other sprays when averaging across residues (figure 4).

Our results suggest that the PLA-W and straw suppressed lettuce growth by N immobilization. But given 66 days of soil contact, neither straw or PLA-W reduced N availability compared to controls.

Lesson: In some circumstances biodegradable mulches may ‘tie up’ nutrients when incorporated into soil. Be wary of nutrient restriction especially in infertile soils, when a new crop immediately follows mulch incorporation, and if mulch is fairly unweathered when incorporated.

Field

Experiment: 2017 yields of sweet pepper were compared using PLA-W and BP mulch at two Nebraska sites, Scottsbluff and Lincoln. In October 2017 mulches were incorporated by spader (in) or removed (off) to test the effect of mulch incorporation on subsequent 2018 sweet corn crop. Neither crop’s yield was affected by mulch type, and incorporation versus mulch removal had no effect on the 2018 sweet corn yields (figure 8). Similar findings have been reported by other authors as well.

Lesson: Mulch choice has less impact on crop performance, and more impact on persistence in soil. Choosing among biodegradable mulches should be based on cost and compatibility with systems in place for installation and tillage rather than expectations of yield effect.

Microcosm

Experiment: Trash bags were buried in soil in microcosms and treated with sprays.

Results: No change in percentage C:N ratio (CE) or percentage phosphorus (Dissolved) when incorporated with CE. PLA-W reduced lettuce growth, and straw reduced growth.

Lesson: Biodegradable mulches may ‘tie up’ nutrients when incorporated into soil. Be wary of nutrient restriction especially in infertile soils, when a new crop immediately follows mulch incorporation, and if mulch is fairly unweathered when incorporated.