Fertilizer Use Optimization in Sub-Saharan Africa

Charles S. Wortmann and Keith Sones, editors
Published by CABI
Fertilizer Use Optimization in Sub-Saharan Africa is a 2017 CAB International publication.

This book is intended for the public good as a source of technical information and for in-service and university education. You are free to copy and distribute. Please cite information that you use in other publications. Do not use figures and tables that were obtained from other sources without the permission of the original publisher as these may be copyright protected. Please cite the chapter authors for information used in other publications.

ISBN (paperback): 978 1 78639 204 6
ISBN (e-book): 978 1 78639 205 3
Contents

Foreword ... 7

1. Fertilizer Use Optimization: Principles and Approach ... 9
 1.1 Introduction .. 9
 1.2 What is optimization? .. 9
 1.3 Fertilizer use optimization ... 10
 1.4 Fertilizer optimization tools ... 11
 1.5 Using the Excel FOT .. 12
 1.6 Paper versions of FOTs ... 15
 1.7 Conclusion .. 17
 1.8 References .. 17

2. Spatial Analysis for Optimization of Fertilizer Use .. 20
 2.1 Background .. 20
 2.2 Spatial data .. 21
 2.3 Fertilizer use optimization tools (FOT) for AEZ of Burkina Faso ... 21
 2.4 References .. 23

3. Integrated Soil Fertility Management in Sub-Saharan Africa ... 25
 3.1 Introduction .. 25
 3.2 Integrated Soil Fertility Management ... 25
 3.3 Common ISFM practices for sub-Saharan Africa ... 26
 3.3.1 Land application of organic resources .. 26
 3.3.2 Organic resources complemented with fertilizer application .. 27
 3.3.3 Crop residue management and tillage .. 27
 3.3.4 Intercropping with legumes ... 29
 3.3.5 Green manure ... 31
 3.3.6 Cereal-legume rotation ... 32
 3.3.7 Adding perennials to the annual crop rotation ... 33
 3.3.8 Parkland agriculture .. 33
 3.3.9 Biochar .. 34
 3.3.10 Good fertilizer use practices ... 34
 3.3.11 Water availability ... 37
 3.4 Conclusion .. 37
 3.5 References .. 38

4. Optimizing Fertilizer Use within an Integrated Soil Fertility Management Framework in Burkina Faso ... 40
 4.1 Introduction .. 40
 4.2 Agricultural systems of the agro-ecological zones (AEZ) in Burkina Faso 41
 4.3 Soil nutrient management, including fertilizer use, in Burkina Faso .. 43
 4.4 Optimizing fertilizer use in Burkina Faso .. 43
 4.5 Fertilizer use optimization tools (FOT) for AEZ of Burkina Faso .. 45
 4.5.1 The Excel FOT .. 45
 4.5.2 Paper versions of the FOT. .. 48
 4.5.3 The fertilizer substitution value of other practices ... 48
 4.6 Targeted crops by AEZ .. 49
 4.7 References .. 50

5. Optimizing Fertilizer Use within an Integrated Soil Fertility Management Framework in Ethiopia .. 52
 5.1 Agricultural systems in Ethiopia .. 52
 5.2 Soil fertility management .. 53
 5.3 Diagnosis of nutrient deficiencies in Ethiopia ... 54
 5.4 Optimizing fertilizer use in Ethiopia .. 55
 5.5 Fertilizer use optimization tools ... 57
 5.5.1 The Excel Solver FOT .. 57
 5.5.2 The paper FOTs .. 57
15. Optimizing Fertilizer Use within the Context of Integrated Soil Fertility in Uganda 193
15.1 Agro-ecological zones (AEZ) of Uganda .. 193
15.2 Current soil fertility management ... 197
15.3 Diagnosis of nutrient deficiencies in Uganda .. 198
15.4 Optimizing fertilizer use in Uganda ... 199
15.5 Targeted crops by AEZ .. 204
15.6 Conclusion .. 205
15.7 Acknowledgements ... 209
15.8 References .. 209

16. Optimizing Fertilizer Use within the Context of Integrated Soil Fertility Management in Zambia .. 210
16.1 Introduction .. 210
16.2 Agricultural systems of Zambia .. 210
16.3 Current soil fertility management ... 212
16.4 Fertilizer use optimization .. 212
16.5 Fertilizer optimization tools for Zambia .. 214
16.6 Fertilizer use in an integrated nutrient management framework 216
16.7 Crops addressed by region for optimized fertilizer use .. 216
16.8 Acknowledgements ... 219
16.9 References .. 219

17. Enabling Fertilizer Use Optimization in Sub-Saharan Africa .. 220
17.1 Introduction .. 220
17.2 Enabling fertilizer use optimization by farmers .. 220
17.3 Creating demand for fertilizer use optimization ... 222
17.4 Training farmer advisors on fertilizer use optimization .. 223
17.5 Lessons learned .. 223
17.6 Conclusion .. 224
17.7 Acknowledgements ... 224
17.8 References .. 224

List of Abbreviations .. 225
List of Crops and Other Plants with Scientific Names .. 227
Foreword

Low soil fertility costs Africa’s farmers US$4 billion a year in reduced yields. This usually results in low incomes and poor livelihoods. Part of the problem is that fertilizer use in the continent is only about 12 kg/ha/yr.

Africa’s smallholder farmers are mostly very poor and have little financial ability to invest in inputs such as fertilizer. However, they are generally responsive to perceived high profit opportunities with little risk. The key to increased fertilizer use is to improve the profitability of its use with little risk. Achieving this gives farmers the opportunity to reduce the severity of their financial constraints and to gradually improve their crop management.

Fertilizer recommendations are available for some crops in most African countries, but too often these are decades-old blanket recommendations that cover large regions or even whole countries, are not well supported by field research and are more oriented to achieving high yields rather than high farmer profits.

The AGRA-funded project ‘Developing and fine-tuning fertilizer recommendations within an integrated soil fertility management framework’, abbreviated as the Optimizing Fertilizer Recommendations in Africa (OFRA), was implemented to develop the basis for fertilizer use optimization, that is, more profitable fertilizer use.

Through OFRA, national research institutes of 13 sub-Saharan African countries partnered together, and with CABI and the University of Nebraska-Lincoln, to develop the field research-based information needed for fertilizer use optimization decisions. Results of past research and OFRA-supported research were compiled and systematically analysed. This was applied to determine crop nutrient response functions for the important food crops in each of 67 agro-ecological zones (AEZ) or recommendation domains across the 13 countries. When several response functions for an AEZ are considered, it becomes apparent that profit potential varies according to which nutrient is applied to which crop and the rate of application. Therefore, especially for financially constrained farmers, the crop-nutrient-rate choices are very important to maximizing profitability. The choice of fertilizer types may include blends but maximizing profit potential requires adequate availability of single- (such as urea and triple superphosphate) and multi-nutrient, compound fertilizers (such as diammonium phosphate and potassium chloride).

Country teams integrated the crop nutrient response functions into decision tools that use linear programming to determine recommendations specific to a farmer’s context intended to maximize profit from fertilizer use (see Chapter 1 and country chapters 4-16). These decision tools are called OFRA Fertilizer Optimization Tools (FOT); computer versions are available and also paper versions for use when a computer is not available. The FOT considers the farmer’s financial ability, choice of crops and land allocation, crop values and fertilizer costs to determine the crop-nutrient-rate choices expected to maximize farmer profit from fertilizer use.

Sharing of research results across countries was enhanced with the development of the GIS tool called the OFRA Inference Tool. This tool uses GIS layers for soil properties of Africa Soil Information Service (AfSIS) and climatic properties, elevation, latitude and crops of HarvestChoice in geo-transfer of research results within and across countries between areas of similar growing conditions (see Chapter 2).

Fertilizer use optimization is within the framework of integrated soil fertility management with recommended fertilizer rates adjusted according to soil property information and the use of complementary practices (see Chapter 3).

Much early progress in enabling fertilizer use optimization with farmers and their advisors has been made, but this still requires a tremendous effort with much stakeholder support. Many more government and non-government extension staff and input retailers need to be trained in advising farmers in fertilizer use optimization. Farmers need training in the use of the paper FOTs to make fertilizer use choices according to the 4Rs (right type, rate, time and method of nutrient application) of nutrient stewardship and with proper calibration of...
application). Extension training resources have been developed and applied and many advisors have been trained. This is addressed in Chapter 17 with lessons learned for more effective progress in the future.

AGRA is delighted with the success of the OFRA partnership of 13 countries in 1) developing a strong database of crop nutrient responses while recognizing that more research is needed to address secondary and micro nutrients, intercropping and rotations, and otherwise fine-tuning existing information,

2) providing computer and paper FOTs for 67 recommendation domains, 3) effectively applying GIS in sharing research results across recommendation domains and countries, 4) capturing in the 17 chapters of this book a great deal of information applicable to fertilizer use optimization within integrated soil fertility management framework, and 5) training many extension staff and other stakeholders, realizing that much more of this is needed to achieve fertilizer use optimization throughout sub-Saharan Africa.

Rebbie Harawa,
Interim Head, Farmers’ Solution Program,
Alliance for a Green Revolution in Africa

Bashir Jama Adan,
Divisional Manager, Islamic Development Bank (and previously Head, Soil Health Program, Alliance for a Green Revolution in Africa)