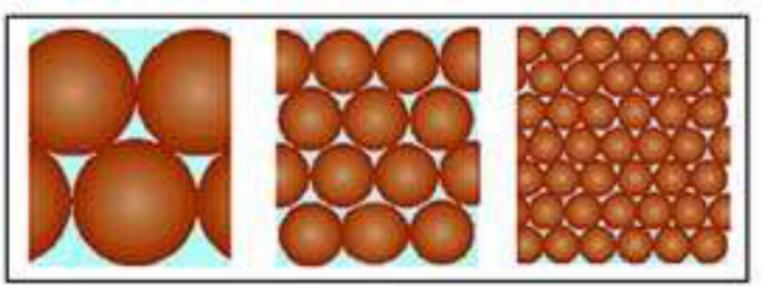


Hops and Soils


Charles Shapiro Extension Soils Specialist Haskell Ag Lab Concord, NE 402 584 3803

Soil properties are biological, physical, and chemical

Factors Controlling Water Flow

Coarser soils

- Larger pores hold water less tightly
- Faster water movement
- Less surface area, less nutrient holding capacity

Finer soils

- Small pores hold water more tightly
- Slower water movement
- More surface area, greater nutrient holding capacity

Evaluating Infiltration

An easy soil physical property to measure

Infiltration

- Infiltration Rate in/hour
 - soil texture,
 - porosity and pore size distribution,
 - protective vegetative cover/ crop residue

Texture affect on Infiltration Rate

Soil Type	Steady infiltration rate (inches per hour)
Sands	> 0.8
Sandy and silty soils	0.4 - 0.8
Loams	0.2 - 0.4
Clayey soils	0.04 - 0.2
Sodic clayey soils	< 0.04

Measuring Infiltration Rate

- Drive 3-in diameter ring to a depth of 3-in
- Line ring with plastic wrap
- Pour 107 ml water into the ring (1 in of water)
- Gently pull the plastic away
- Record the time it takes for the water to disappear

Soil Fertility Issues

Field Guide for Integrated Pest Management in Hops

Oregon State University, University of Idaho, USDA Agricultural Research Service, and Washington State University

Table of Contents

Introduction

Pest Management, Crop Loss, and IPM

Principles of Integrated Pest Management

Systems-level Management1
Pest and Natural Enemy Identification2
Pest and Natural Enemy Biology and Life History2
Economic Injury Levels and
Economic (Action) Thresholds2
Monitoring for Pests, Damage, and Treatment Success3
Multi-tactic Management Approaches

Pesticide Toxicol

Pesticide Toxicity Rating Pesticide Resistance Mat

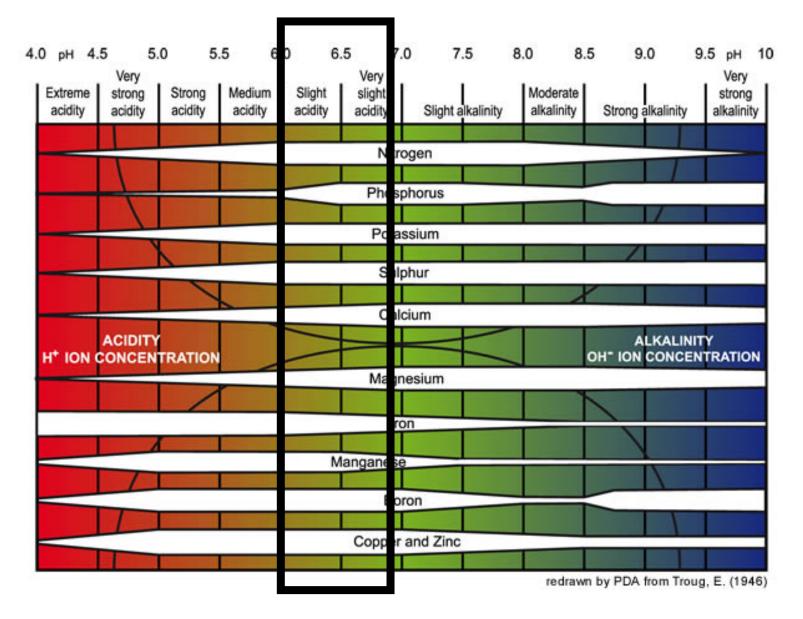
. . .

Disease Managen
Fungal and Bacterial Dis
Alternaria Cone E Black Root Rot
Black Root Rot
Downy Mildew
Fusarium Canker.
Fusarium Cone Ti
Gray Mold
Powdery Mildew
Red Crown Rot
Sclerotinia Wilt (White Mold)
Sooty Mold
Verticillium Wilt
Diseases of Minor Importance
Virus and Viroid Diseases
Carlavirus Complex: American hop latent virus,
Hop latent virus, and Hop mosaic virus
Apple mosaic virus
Hop snunt viroid
Other Viruses, Viroids, and Virus-like Agents
Nematodes
Hop Cyst Nematode
Abiotic Diseases
Heptachlor Wilt

Arthropod and Slug Pest Management

California Prionus Beetle	
Hop Aphid	
Garden Symphylan	40
Hop Looper and Bertha Armyworm	
Root Weevils	
Twospotted Spider Mite	
Minor Arthropod and Slug Pests	

Beneficial Arthropods


Nutrient Management and Imbalances......79

Index	

Weed Management	69
Planning a Weed Management Program	70
Prevention	70
Weed Seedling Identification	71
Cultural Tactics	72
Herbicides	72
Table of Efficacy Ratings for Weed Management Tools in Hops	75
Calculating Treated Acres versus Sprayed Acres	
Common Symptoms of Herbicide Injury on Hop	77
Nutrient Management and Imbalances	79
Index	81

Influence of pH on nutrient availability

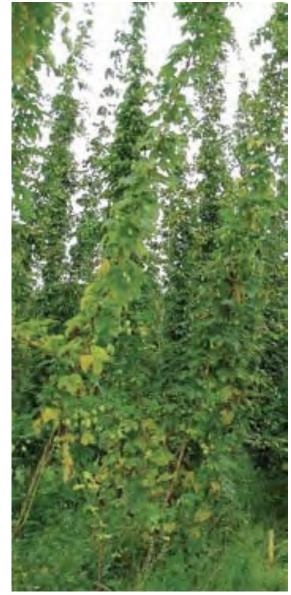
Nutrient Management and Imbalances (David Ghent, Oregon publication)

Nebraska is not the Northwest

- Publication implies problems with:
 - Boron deficiency
 - Calcium deficiency and excess
 - Magnesium deficiency
 - Manganese
 - Molybdenum

Nitrogen

Symptoms of nitrogen deficiency include:


- poor growth
- stunting
- general yellowing most pronounced on older leaves
- cones smaller

Excessive nitrogen can:

- Increase incidence of:

powdery mildew, Verticillium wilt, spider mites, hop aphid

- Reduce cone alpha acid levels

Fertility Recommendations

Dr. Ron Goldy, MSU Extension

- Nitrogen Timing
 - Before July 1, stage 1-3
 - Split application
 - 35% early
 - Remainder over first 8 weeks of season

Rates:

Nitrogen 100 – 150#/ac Establishment year 75 #

- Crop staging
 - 1. Leaf development
 - 2. Shoot formation
 - 3. Bine elongation
 - 4. Flower formation
 - 5. Flowering

Soil moisture, don't let go below 65% available water Notes from Oregon Field Guide 79 (C. Gingrich, J. Hart, and N. Christensen)

Phosphorus; need is low

- 9-10 bale/acre removes 20-30s P/acre (46 69 P2O5)
- 25- 30% in cones
- Not much soil test research on P calibrations; most hops yards are high in P and don't respond to P.

Table 1.—P fertilization rates for hops.				
If the soil test	Apply this amount			
for P is	of phosphate (P ₂ O ₅)			
(ppm)*	(lb/a)			
0-30	60—100			
31-60	0—60			
over 60	0			

*Soil test using Bray and Kurtz P1 (ammonium fluoride) extracting solution.

Oregon Field Guide 79

Table 1.—P fertilization rates for hops.

If the soil test for P is (ppm)*	Apply this amount of phosphate (P ₂ O ₅) (lb/a)
0-30	60–100
31-60	0–60
over 60	0

*Soil test using Bray and Kurtz P1 (ammonium fluoride) extracting solution.

Field Guide for Integrated Pest Management in Hops

> Oregon State University, University of Idaho USDA Agricultural Research Service, and Washington State University

Hops and Soils

- 1. Select well-drained site
- 2. Collect baseline soil test
 - a. Check pH, adjust as needed
 - b. Monitor P, K
- 3. Nitrogen management critical
 - a. Most at planting
 - b. As needed first 8 weeks
 - c. Adjust when know yield levels

Charles Shapiro

402 584 3803

cshapiro@unl.edu

Oregon Field Guide 79

Potassium

- Most Nebraska soils are >200 ppm
- K uptake 80-150 K/acre
- ¼ in cones; when vines returned removal is minimal
- Petiole analysis for K (critical value not given)

Table 2.—Potassium fertilizer recommendations for hops based on a soil test using ammonium acetate extracting solution.

If the soil test for K is (ppm)	Apply this amount of potash (K ₂ O) (lb/a)				
	$(\mathbf{A})^{1}$	(B) ²	(C) ³		
0-100	80-120	20	160		
101-200	0-80	80-120	120-160		
over 200	0	0-80	80-120		

¹Use fertilization rates in column A for silty soils such as Amity or Woodburn.

²Use column B for sandy soils such as Newberg without gravel layers.

³Use column C for Newberg or Chehalis soils with gravel layers.

Other nutrients:

- Keep pH near 6.5, above 5.7
- On sandy, low OM soils some sulfur may be OK (30 lbs/acre)
- Boron probably is not an issue. Nebraska has found little response even at 0.4 ppm. Caution here.
- High pH, areas of surface removal might show Zinc deficiency symptoms; if DTPA Zinc is less then 0.5 might experiment, use corn recommendations (10 lbs broadcast and 3 lbs banded/acre)

Notes from Oregon Field Guide 79 (C. Gingrich, J. Hart, and N. Christensen)

- Know depth of soil at site (sample to 5 ft if unknown)
- Tissue tests can monitor growth
- Petiole samples for N; sample at 5-6 ft above ground
- Above ground biomass peaks and plateaus mid July
- By end of August cone dry matter is 30% of total above ground biomass
- N uptake is concentrated from mid-June to early July
- N uptake ranges from 80-150 lbs N/acre; cones have 5-6 lbs N/bale; 8-10 bale/acre yield is typical
- Account for N in vines if returned; they contain 2-3 x what is in the cones

Nutrient Management and Imbalances (David Ghent, Oregon publication)

• Nebraska is not the Northwest

• Publication implies problems with (not likely in NE):

Nutrient	Symptoms appear	Symptom	Interaction
Boron (B)	Acid soils	Stunting, distortion, misshapen	Maybe factor in red crown rot
Calcium (Ca)	Young tissue, growing point	Similar to B, yellowing, death of leaf margins	Excessive Ca can induce Mg and K deficiencies
Magnesium (Mg)	Older leaves; acid soils	Yellow between veins;	Where high potassium applied
Manganese (Mn)	High pH soils (def) Low pH soils (toxic)	Yellow young leaves, white speckling	At less then 5.7 pH can induce Fe def.
Molybdenum (Mo)	Older leaves; acid soils (< 5.7)	Yellow and speckling	Can be misdiagnosed as N

Nutrient Management and Imbalances (David Ghent, Oregon publication) Nebraska nutrient issues

Nutrient	Symptoms appear	Symptom	Interaction
Nitrogen (N)	Older leaves	Yellow, stunted growth, stunted cones	High N can induce diseases, arthropod pests; reduces alpha acids
Phosphorus (P)	Lower leaves	Down curved, darker green, cones may have brown coloring	Excess P may induce Zinc def. in high pH soils; foliar applications may suppress disease
Potassium (K)	Older leaves first	Weak bines; bronzing between leaves	Excess K may induce Mg def.
Sulfur (S)	Younger leaves, acid sands	Stunted, spindly, yellow	
Zinc (Zn)	High pH soils	Weak growth, short lateral branches, brittle	
Iron (Fe)	High pH soils	Young leaves, between veins	May compete with Mn in low pH soils

Chemical properties and Haney Soil Health Analysis

Sites/property	East Campus	Norfolk	Sutton	Valparaiso	PHREC
рН	6.8	6.7	6.7	6.4	7.8
Soluble salts (mmho/cm)	0.41	0.19	0.29	0.27	0.36
OM (%)	4.5	1.4	4.2	3.1	1.4
Solvita CO2 (ppm C)	176	33	148	113	5.7
Soil Health Calc.	21	8	14	12	4
	Nutrient availability to next crop (lbs/acre)				
Ν	86	52	45	56	33
P ₂ O ₅	163	79	20	94	72
K ₂ O	239	196	196	216	209

Chemical properties and Haney Soil Health Analysis

Sites/property	East Campus	Norfolk	Sutton	Valparaiso	PHREC
Total N (ppm)	40	34	25	25	29
Organic N (ppm)	28	23	22	18	16
H3A Nitrate (ppm)	6	7	0.3	4	10
H3A NH4 (ppm)	10	7	6	6	4
N mineralization (ppm)	26	7	5	12	2
Org. N Release	28	13	16	18	2
Organic C: org. N	12	9	18	14	7

Five hops demonstration sites sampled April 2015 near establishment.

Zinc deficiency

Soil Permeability Classes

Permeability Class	Criteria Estimated rate (in/ hr)		
Very Slow	< 0.06		
Slow	0.06 – 0.2		
Moderately Slow	0.2 – 0.6		
Moderate	0.6 – 2.0		
Moderately Rapid	2.0 - 6.0		
Rapid	6.0 – 20		
Very Rapid	> 20		