

Common Ragweed (Ambrosia artemisiifolia L.) Interference in Nebraska Soybeans

*Ethann Barnes¹, Amit Jhala¹, Stevan Knezevic¹ Peter Sikkema², John Lindquist¹ ¹University of Nebraska-Lincoln, Lincoln, NE, ²University of Guelph, Guelph, ON, Canada

E-mail: ethann.barnes@unl.edu

INDRODUCTION

Common ragweed

- Competitive weed in soybean production fields
- Grows up to 2 meters tall
- Produces 3,000 to 62,000 seeds per plant ¹
- Emerges from mid-April through May in Nebraska
- 50% cumulative emergence is obtained in mid-April to early-May (Figure 1)
- Recently a population of glyphosate resistant common ragweed has been confirmed in Nebraska ²

OBJECTIVE

Objective

• To assess common ragweed interference in soybean at varying weed densities as influenced by variable water supply

MATERIALS, METHODS, AND ANALYSIS

Treatment Design

- Split plot
- Four replications

Irrigation Main Plot

- Full (predicted ET replacement)
- Half (50% replacement)
- Zero

Common Ragweed Density Sub Plot

- 0/m¹ in soybean
- 2/m¹ in soybean
- 6/m¹ in soybean
- 12/m¹ in soybean
- 2/m¹ without soybean

Figure 2. plot layout of the field

V3, R1, R4, R6 LAI, biomass

Figure 3. common ragweed leaf in leaf area meter

- Common ragweed was seeded on April 30th by hand
- Soybeans were planted on May 13th
- Common Ragweed was thinned by hand to desired density
- PROC NLIN procedure in SAS 9.4 was used to fit the hyperbolic yield loss model: ³
- Parameter I is the initial slope and A is the maximum yield loss constrained to a number between 0 and 100

RESULTS

Because of adequate rainfall in 2015, there was no significant effect of irrigation treatment

Yield loss-common ragweed density interaction

Residual sum of squares	2049.3
Parameter I	159.5
Pseudo R ²	0.97

Figure 4. Soybean- common ragweed interference relationship

Common ragweed density (plants per m⁻¹ crop row)

Residual sum of squares	3135.8
Parameter I	91.2
Pseudo R ²	0.96

Yield loss- common ragweed LAI interaction at R1 sampling

			0
Residual sum of	squares	2435.3	
Parameter I		2347.2	
Pseudo R ²		0.97	

Figure 5. Common ragweed LAI drives soybean yield loss

Figure 7. 2 common ragweed/m² on DOY 205 (July 24th)

Figure 8. 12 common ragweed/m² on DOY 205 (July 24th)

CONCLUSIONS

- Yield loss was correlated to common ragweed density, LAI, and total aboveground biomass
- Common ragweed densities of 6/m¹ resulted in yield loss of greater than 90%
- A common ragweed LAI of .57 m⁻²/m⁻² at the R1 stage resulted in 90% soybean yield loss
- Low common ragweed densities impacted soybean yield greatly
- The study will be repeated in 2016

LITERATURE SITED

- 1) Jordan T, et al. (accessed Feb 18, 2015) The Glyphosate, Weeds, and Crop Series. Purdue Extension
- 2) Heap I, (accessed Dec 10, 2015) weedscience.org
- 3) Cousens R, et al. (1987) Weed Science