

Effect of Fall and Early Spring Application of Thiencarbazone plus Iodosulfuron on Spring Emergence of Glyphosate-resistant Giant Ragweed (*Ambrosia trifida*) in No-till Corn (*Zea mays*)

Simranpreet Kaur*¹, Kevin Watteyne², Amit J. Jhala¹; ¹University of Nebraska-Lincoln, Lincoln, NE, ²Bayer CropScience, Lincoln, NE e-mail: simranpreet.kaur@huskers.unl.edu

Introduction

- Giant Ragweed (*Ambrosia trifida* L.) is a vigorous weed resulting upto 13.6% grain yield loss in corn at a density of 1 plant per 10 m⁻² (Harrison et al. 2001).
- No-till corn production is widely adopted by growers due to reduced soil erosion, improved water retention and low fuel and labor cost, leaving herbicides as the only weed control option
- The reduced emergence of summer annual weeds is achieved by using residual herbicides such as chlorimuron, tribenuron and sulfentrazone.
- A Pre-packed tank mixture of thiencarbazone- methyl plus iodosulfuron- methyl (AutumnTM Super) has been recently registered for post-harvest burndown and early spring control prior to planting corn and soybean.
- Burndown activity of the herbicide can be enhanced by tank mixing it with 2,4-D, glyphosate, dicamba and metribuzin.

Objectives

- To determine the influence of thiencarbazone- methyl plus iodosulfuron- methyl applied in fall and early spring in controlling glyphosate resistant giant ragweed in no-till corn.
- To compare the efficacy when tank mixed with 2,4-D, dicamba and metribuzin.

Material and Methods

- Field experiment was conducted at Clay County, NE in a field infested with glyphosate-resistant giant ragweed.
- Herbicide treatments were applied at recommended rate in fall of 2012 or early spring of 2013 or with a split application in fall and early spring at least 30 days prior to planting no-till corn.
- Randomized complete block design was followed with four replications and twelve treatments (including nontreated control).
- All treatments include blanket application of Thiencarbazone-methyl plus isoxaflutole at 78 g ai/ha + Atrazine at 560 g ai/ha applied as pre- emergence *fb* Tembotrione at 92 g ai/ha + atrazine at 560 g ai/ha applied as post emergence.
- Data was subjected to ANOVA using PROC MIXED procedure in SAS.

Table 1. Details of treatments

Herbicide	Application	Code	Rate
	timing		g ae or ai ha ⁻¹
Nontreated control	-	1	-
Thiencarbazone plus Iodosulfuron	Fall	2	17.9
Thiencarbazone plus Iodosulfuron	Early Spring	3	17.9
Thiencarbazone plus Iodosulfuron <i>fb</i>	Fall	4	8.9
Thiencarbazone plus Iodosulfuron	Early Spring		8.9
Dicamba <i>fb</i>	Fall	5	560
Dicamba	Early Spring		560
Thiencarbazone plus lodosulfuron+dicamba fb	Fall	6	8.9 + 560
Thiencarbazone plus Iodosulfuron+dicamba	Early Spring		8.9 + 560
2,4- D fb	Fall	7	830
2,4-D	Early Spring		830
Thiencarbazone plus Iodosulfuron+2,4- D fb	Fall	8	8.9 + 830
Thiencarbazone plus Iodosulfuron+2,4- D	Early Spring		8.9 + 830
Glyphosate	Fall	9	840
Thiencarbazone plus lodosulfuron+Glyphosate fb	Fall	10	8.9 + 840
Thiencarbazone plus Iodosulfuron+Glyphosate	Early Spring		8.9 + 840
Metribuzin	Fall	11	315
Thiencarbazone plus Iodosulfuron+Metribuzin fb	Fall	12	8.9 + 315
Thiencarbazone plus lodosulfuron+Metribuzin	Early Spring		8.9 + 315

Fig.1. (A) Control of glyphosate- resistant giant ragweed at 21 Days after Early Spring treatment (B) Yield of Corn at harvest (below)

Nontreated control

Thiencarbazone plus iodosulfuron (Early spring)

Metribuzin (Fall)

Conclusions

■ Thiencarbazone plus iodosulfuron tank mixed with 2,4-D, dicamba, or metribuzin provided >95% control of giant ragweed and other winter annuals including tansy mustard, henbit, and field pennycress compared with treatments without thiencarbazone- methyl plus iodosulfuron- methyl.

Thiencarbazone plus iodosulfuron + dicamba (Fall and early spring)

Thiencarbazone plus iodosulfuron + 2,4- D (Fall and early spring)

Thiencarbazone plus iodosulfuron + metribuzin (Fall and early spring)

Harrison, S. K., E. E. Regnier, J. T. Schmoll, and J. F. Webb. 2001. Competition and fecundity of giant ragweed in corn. Weed Sci. 49:224–229.

(B) **20000**