

Weed Management in Dicamba-Tolerant Soybean

Debalin Sarangi*1, Mayank S. Malik², and Amit J. Jhala¹

¹University of Nebraska–Lincoln, NE; ²Monsanto Company, St. Louis, MO *debalin.sarangi@huskers.unl.edu

Introduction

- As of 2016, 32 weed species worldwide confirmed resistant to glyphosate (Heap 2016).
- Multiple herbicide-resistant weeds, such as common waterhemp, are now a challenge for the growers in the Midwestern United States (Sarangi et al. 2015).
- Roundup Ready 2 Xtend™ soybeans (dicamba and glyphosate-tolerant) will be offering growers a new weed management tool to control glyphosate-resistant and other hard-to-control weed species.
- Dicamba is labeled for control of more than 274 broadleaf weeds. So far, kochia and prickly lettuce have been reported resistant to dicamba in the United States.
- The Roundup Xtend[™] (dicamba + glyphosate), and XtendiMax[™] (dicamba) will contain a low-volatility salt of dicamba, along with the VaporGrip[™] Technology.
- Pending upon regulatory approval, this technology will be commercialized in near future.

Objectives

- 1. To evaluate the herbicide programs in dicamba-tolerant soybean
- 2. To compare the results with the glufosinate-based weed management system

Materials and Methods

- Field experiments were conducted in 2015 at Clay County and Seward County, NE.
- Experiments were laid out in the randomized complete block design with four replications.
- PRE herbicides were applied at soybean planting, whereas early- and late-POST herbicide applications were made at 15- and 30-d after PRE (DAPRE), respectively (Table 1).
- Visual weed control, density, soybean injury and yield were recorded.
- Data were subjected to ANOVA using PROC GLIMMIX in SAS.
- Environment-effect was significant; therefore, data from two experiment sites were presented separately.

Table 1: Details of herbicide treatments, and rates for weed management in dicamba- or glufosinate-tolerant soybeans

Treatment codes	Herbicide names		Rates (g ai ha ⁻¹)		Site info.
	PRE	E-POST	PRE	E-POST	Silt-loam soil pH 6.5 OM 2.5% Irrigated
D1					
D2	Rowel	MON 119096	72	560	
D3	Rowel + MON 119096	MON 76832	72 + 560	1,680	
D4	Rowel + MON 119096	MON 76832 + Warrant	72 + 560	1,680 + 1,270	
D5	Rowel FX + Roundup	Flexstar GT	113 + 1,260		
D6	Rowel	Cobra + Roundup	72	175 + 1,260	
D7	Rowel + Roundup	Cobra + Warrant	72 + 1,260	175 + 1,270	
G1	Rowel	Liberty	72	594	
G2	Rowel	Liberty (E- and L-POST)	72	594 + 594	
G 3	Rowel	Liberty + Dual II Magnum	72	594 + 1,070	

- Cobra: lactofen
- Dual II Magnum: S-metolachlor
- Flexstar GT: fomesafen + glyphosate
- Liberty: glufosinate
- MON 119096: LV dicamba

- MON 76832: LV dicamba + glyphosate
- Roundup: glyphosate
- Rowel: flumioxazin
- Rowel FX: flumioxazin + chlorimuron ethyl
- Warrant: acetochlor

All herbicide programs resulted in > 80% control of common waterhemp and velvetleaf at Clay County, and > 95% control at Seward County at 21 DAPRE.

Results and Discussion

Figure 2: Effect of herbicide treatments on common waterhemp control in dicamba-tolerant soybean

Figure 3: Soybean yield as affected by the herbicide treatments at Seward County, NE

Herbicide treatments

- Dica: dicamba based; Gluf: glufosinate based; Reg: non-dicamba or -glufosinate based herbicide programs

- DAEPOST: d after early-POST

 lachlor applied POST along with other foliar-ac
- Micro-encapsulated acetochlor, or S-metolachlor applied POST along with other foliar-active herbicides provided higher (≥ 85%) weed control at 98 DAEPOST (Figure 2B). Similarly, Jhala et al. (2015) reported that common waterhemp control was up to 97% at 80 DAEPOST when flumioxazin plus chlorimuron (PRE) were applied followed by micro-encapsulated acetochlor (E-POST).
- Dicamba based herbicide programs resulted in higher soybean yield (1.9 MT ha⁻¹) compared to the glufosinate based programs (1.6 MT ha⁻¹) (Table 2).
- The proposed dicamba application window will be from preplant application to the R1 (beginning of flowering) stage of soybean.
- Low-volatility dicamba formulation will increase the deposition of herbicides, by reducing the off-target movement of dicamba-acid.

Conclusions

- POST herbicide programs that include dicamba with other soil- and foliar-active herbicides can enhance the control of problem weed species like common waterhemp, compared to the POST programs of glufosinate alone.
- Practical implications:
- PRE herbicides are essential for effective control of small-seeded broadleaf weed species.
- Dicamba should be used along with other sites-of-action to gain its full-benefit in agriculture and avoid evolution of additional weeds resistant to dicamba.

Literature Cited

- Heap I (2016) www.weedscience.org
- Jhala AJ, Malik MS, Wills JB (2015) *Can J PI Sci* 95:973-981
- Sarangi D, Sandell LD, Knezevic SZ, Aulakh JS, Lindquist JL, Irmak S, Jhala AJ (2015) Weed Technol 29:82-92