

Application and Environmental factors that affect Post Herbicide Efficacy

Robert N. Klein Western Nebraska Crops Specialist WCREEC, North Platte, Nebraska

- Adequately contact the weeds (ONTO)
- Be absorbed in sufficient quantities (INTO)
- Move within weed to "Site-of-action" (THRU)
- Reach toxic levels at the "Site-ofaction" (DO)

Factors Affecting Foliar Applied Crop Protection Products

- ✤ Water (carrier) volume, pressure, droplet size, and coverage.
- Herbicide rate
- Spray nozzle selection
- Water (carrier) quality
- Temperature before, during and after "Post" herbicide applications
- Relative Humidity
- Dew on plants
- Cloudiness/Sunshine
- Time of day when herbicide was applied
- Soil moisture
- Weed species, biotype, size, emergence pattern and population
- Dusty conditions during application
- Spray additives
- Herbicide antagonism
- ✤ Etc.

Big 3 – Complaint Calls

Drift

Tank Contamination

□Non-Performance

Cleaning the Sprayer

Nebraska Crop Management Conference **EXTENSION** Nozzle Types: Flat Spray Tips: ✓ Extended Range Flat-fan ✓ Drift Reduction Flat-fan ✓ Turbo Flood Flat-fan ✓ Turbo Flat-fan ✓ Al Flat-fan ¹ ✓ TurboDrop Cone Spray Tips: AI11002-VS ✓ Raindrop

Water Carrier Volume, Pressure and Droplet Size

Treatment Parameters Used to Evaluate Three Nozzle Types

<u>beed</u>	<u>Spe</u>	lume	<u>Vol</u>	Spray Particle	Nozzle	Trt
(km/h)	(mph)	(L/ha)	(gpa)	Size		
14	8.6	94	10	Medium	XR11005	1
14	8.6	94	10	Coarse	DG11005	2
14	8.6	94	10	Extremely Coarse	TF-VS2.5	3
15	9.2	70	7.5	Medium	XR11004	4
15	9.2	70	7.5	Coarse	DG11004	5
15	9.2	70	7.5	Extremely Coarse	TF-VS2	6
17	10.3	47	5.0	Fine	XR1003	7
17	10.3	47	5.0	Coarse	DG11003	8
					Untreated	9
	9.2 9.2 9.2 10.3 10.3	70 70 70 47 47 47	7.5 7.5 7.5 5.0 5.0	Extremely Coarse Extremely Coarse Fine Coarse	XR11004 DG11004 TF-VS2 XR1003 DG11003 Untreated	4 5 6 7 8 9

DG Tee Jet

Turbo Flood Jet

* All treatments applied at 30 psi (2 bars)

* Herbicide applied was Paraquat + Atrazine (0.31 + 0.5 lb/A) (0.35 + 0.56 kg ai/ha)

Relative Mobility of Herbicides in Plants

Contact (non-translocated)	Intermediate*	Systemic (translocated)		
Aim/Teamwork	Atrazine	Accent	Glyphosate	
Authority	Princep/	Ally	Balance	
Basagran	Simazine	Amber	Beacon	
Blazer	Sencor	Assure II	Exceed, Spirit	
Buctril/Moxy	Command	Callisto	Glean	
Connect	Liberty (Ignite)	Classic	Permit	
Cobra		Fusilade	Harmony	
Gramoxone		Poast Plus	Peak	
Flexstar		Banvel/Sterling	Stinger	
Reflex		Clarity	Basis	
Resource		2,4-D & 2,4-DB	Tordon	
Bison		MCPA	Scepter	
		Pursuit		
* Command & triazine herbicides move upward from roots to leaves when soil applied, but				

* Command & triazine herbicides move upward from roots to leaves when soil applied, but not down from foliage to the roots if post applied. Liquid fertilizer can provide contact action. Simazine is not as effective post as other triazines.

Application Methods

(Broadcast Equipment)

Ground Broadcast Application: Apply the recommended rate of Milestone as a coarse low-pressure spray. Spray volume should be sufficient to uniformly cover foliage. Increase spray volume to ensure thorough and uniform coverage when target vegetation is tall and/or dense. Higher volumes (greater than 10 gallons per acre) generally provide better coverage and better control, particularly in dense and/or tall foliage canopies situations. To enhance foliage wetting and coverage, an approved non-ionic agricultural surfactant may be added to the spray mixture as recommended by the surfactant manufacturer.

SPRAY VOLUME CUTTING DROPLET SIZE IN HALF RESULTS IN EIGHT TIMES THE NUMBER OF DROPLETS

Doubling the spray droplet size reduces the number of droplets used to apply the same amount of formulation from eight to one, reducing coverage.

Comparison of Micron Sizes for Various Items: (approximate values)

pencil lead 2000 (μm)

D paper clip 850 (μm)

staple
toothbrush bristle
sewing thread
human hair
420 (μm)
300 (μm)
150 (μm)

Nozzles – Droplet Size

- Droplet size vs quantity
- At 1000um, 10 gpa: (Ultra Coarse)
 - Droplets/acre = 7,210.009 Droplets/inch² = 12
- At 500um, 10 gpa: (Very Coarse-Extremely Coarse)
 - Droplets/acre = 578,368,350 Droplets/inch² = 92
- At 250um, 10 gpa: (Medium 236-340)
 - Droplets/acre = 4,626,946,801 Droplets/inch² = 738
- At 150um, 10 gpa: (Very Fine-Fine)
 - Droplets/acre = 62,425,040,836 Droplets/inch² = 9956

Cutting droplet diameter in half results 8 times as many droplets (X,Y,Z axis)

Coverage/Drift Potential (Mean drops per square inch)

GPA					
Vmd	5	10	20	50	100
250	369	738	1475	3688	7376
300	213	427	854	2134	4268
400	90	180	360	900	1801
500	46	92	184	461	922
600	27	53	107	267	534
800	11	23	45	113	225
1000	6	12	23	58	115

Which nozzle tip XR, DG or TF would you expect to give the best control with paraquat and atrazine?

Nebraska Crop Management Conference NDSU Ignite GPA Study

Which nozzle tip will give the most translocation of Roundup herbicide into the roots:

Droplet Size	% Retention (Actual over Calculated)
Fine	47 🛛 2
Medium	37 🛛 7
Very Coarse	38 🛛 4
0% 0% 0%	

\$

Even at lower retention, large droplets showed higher uptake & translocation in RR corn

Volume Median Diameter (VMD)

Nebraska Crop Management Conference **EXTENSION** Maximizing the Effectiveness of Fungicides, Houston B. Couch Virginia Polytechnic Institute and State University 1.00 90 80 70 % Disease 60 50 40 30 20 10 0 T-8002 TK-30 TK-30 TK-30 **TK-30** 30psi 40psi 55psi 30psi 20psi 2 bars 2.8 bars 3.8 bars 2 bars 1.4 bars Nozzle Type and Pressure

Comparative effectiveness of Chipco 26019® in the control of Sclerotinia dollar sport when applied with Floodjet® TK-30 nozzles vs. flat fan T-8002 tips. 8002 at 30 psi (2 bars) is medium size spray droplet but close to fine in spraying systems book.

Water (carrier) Quality

AMS Effect on Roundup Ultra Efficacy			
Water Source	Percent Weed Control		
	Redroot Pigweed	Lambsquarter	Velvetleaf
Hard Water	99	77	70
Water pH 8.2	99	90	81
Deionized Water	99	97	82
Water 800 ppm Ca	99	83	72
Water 800 ppm Ca + AMS	99	98	98
			Minnesota

How much AMS do I need?

What else does AMS do for us?

Overcomes antagonisum on leaf surface

Helps with movement of glyphosate through cuticles, epidermis, cell walls and membranes and vascular tissue

Very weed specific
Velvetleaf vs. Lambsquarter

Soybean Canopy Penetration Study

Evaporation and Deceleration of Various Size Droplets*

Droplet Diameter (microns)	Terminal Velocity (ft/sec)	Final Drip diameter (microns)	Time to evaporate (sec)	Deceleration distance (in)	
20	.04	7	0.3	<1	
50	.25	17	1.8	3	
100	.91	33	7	9	
150	1.7	50	16	16	
200	2.4	67	29	25	
*Conditions assumed: 90 F. 36% R.H., 25 psi., 3.75 pesticide solution					

Nozzles Used in the Study

Travel Direction

Total Nozzle					
Treatment	Nozzle(s)	Pressure psi	Output gpm	Speed mph	Nozzle Position
1 📷	XRC 11003 (2)	15	0.36	3.6	I.
2 🌔		30	0.52	5.1	\sim
3		60	1.74	7.3	
4	XRC 11003 (2)	15	0.36	3.6	Y
5 🎽		30	0.52	5.1	•
6 🛰		60	0.74	7.3	
7	XRC 11006	15	0.37	3.6	
8		30	0.52	5.1	•
9		60	0.73	7.3	
10	XRC 11006	15	0.37	3.6	I
11 🎽		30	0.52	5.1	ł
12		60	0.73	7.3	

Nozzles Used in the Study

Travel Direction

	Total Nozzle				
Treatment	Nozzle(s)	Pressure psi	Output gpm	Speed mph	Nozzle Position
13	📷 TT 11003 (2)	15	0.36	3.6	\prec
14		30	0.52	5.1	•
15		60	1.74	7.3	
16	TT 11006	15	0.36	3.6)
17		30	0.52	5.1	•
18	Called A	60	0.74	7.3	
19	AIC 110025 (2)	30	0.37	3.6	1
20		60	0.52	5.1	->
21		90	0.73	7.3	
22	AIC 11005	30	0.37	3.6	
23		60	0.52	5.1	2
24		90	0.73	7.3	•

Percent Coverage Averaged Over Treatments and Card Positions

Application – Time of Day

Time of Day

Weed control obtained by "Post" herbicides can be affected by the time of day at which they are applied.

- Liberty and Roundup efficacy is best if applied within a couple of hours after dawn and before dusk.
- It is not well understood, but reduced weed control may be the result of diurnal movement (leaf orientation) of the weeds leaves and/or the effect of light on physiological interactions within the plant.

Influence of time of day on glyphosate efficacy

Effect of Time-of-Day Application on Roundup

Temperature Before, During and After Application

Effect of Time-of-Day Application on Roundup

□ If moisture is limiting and accompanied with high temperatures, plants develop thicker cuticles.

If temperatures prior to, during or after applications drop below 50 degrees, basic plant process slow down for at least 48 hours.

Effect of temperature on control of green foxtail and redroot pigweed With accent applied Post (% reduction in dry weight). ¹

Temperature	Green Foxtail	Redroot Pigweed
50	56	95
68	95	95
86	95	97

¹ Weed Technology. 1991. Vol. 5: 92 – 96. Nalewaja, Woznica and Manthey.

Plant stress affects glyphosate efficacy: velvetleaf seedlings Zhou et al. 2007. Weed Sci. 55:240 - 244

Source of	Percent control			
stress	<u>No adjuvant</u>	<u>Surf. & AMS</u>		
None	84	93		
Cold	68	80		
Drought	46	67		
Flooding	50	68		

Dusty Conditions During Application

Dusty Conditions During Application "Wheel – Tracks"

Some herbicides, in particular Gramoxone, Touchdown, Roundup (and other glyphosate formulations) are deactivated when they come in contact with soil particles including dust brought up by applications equipment and/or dust on leaf surfaces.

Glyphosate is adsorbed to soil

Glyphosate is immediately inactivated upon contact with soil (or dirty water)

Glyphosate efficacy is reduced by dust on weed leaves (Zhou et al. 2006. Weed Sci. 54:1132-1136)

Treatment	Control
Plant without dust	81%
Plant with dust	60%

Sprayed with 22 oz. RT3 Wheel tract issues 5 weeks later.

_____should be checked when mixing differing pesticides to avoid a loss of effectiveness, clogging of nozzles and changes in toxicity.

- a. Residues
- b. Both A & Dc. Compatibilityd. Solubility

General Standards

EXTENSION

Thank you! Robert N. Klein Western Nebraska Crops Specialist